
Interpolation

Let the explicit form of y = f(x) be unknown in an analytical form but it is known only at the
(n + 1) distinct values of x and (n + 1) data points as is the Table. Since the analytical formula
for f(x) is not known, the precise value can not be obtained for specific values of x. Here we are
to evaluate the value of y, for any intermediate value of given x ∈ (x0, xn), called interpolation.
If x is outside of (x0, xn), the process is called extrapolation. The object is to estimate the values
of the function at non-tabular points having an error bound between the estimated and the true
values. The study of interpolation is based on the calculus of finite differences. The methods for
interpolation may be put into two categories according to whether the tabular points are equispaced
or not necessarily at equal interval. In any case, it will be assumed that the behavior of y with
repeat is smooth, i.e., there are no sudden variation in the value of y.

1 Interpolating Polynomial

Let f(x) ∈ C∞(−∞,∞). The principle of interpolating polynomial is “ the selection of a function
φ(x) from a given class of functions such that the graph of y = φ(x) passes through a finite set of
given points”. The function φ(x) is called interpolating function or approximating function φ(x)

which satisfy the interpolating conditions φ(xi) = f(xi); i = 0, 1, · · · , n. Although there may be
several functions interpolating the same data, we shall be confined to polynomial approximation
in one form or another. When φ(x) is a polynomial, the process of representing f(x) by φ(x)

is called polynomial or parabolic interpolation , and when φ(x) is a finite trigonometric series,
the process is trigonometric interpolation. In like manner, φ(x) may be a series of exponential
functions, Legendre polynomials etc. Now, polynomial interpolation is based on the following
theorem known as Weierstrass theorem :

THEOREM 1. Let a function f(x) ∈ C[a, b] and let ε > 0 be any preassigned small number.
Then, ∃ a polynomial φ(x) for which |f(x)− φ(x)| < ε; x ∈ [a, b] i.e., any continuous function
can be uniformly approximated by a polynomial of sufficiently high degree within any prescribed
tolerance on the finite interval.

(i) Generally φ(x) is assumed to be smooth or continuous in the interval of interpolation and
that it is amenable to approximation by some type of function - polynomial, trigonomet-
ric,etc.

(ii) Polynomials are the simplest, easy to derive and most widely used class of functions.

(iii) We use interpolating polynomials to determine the formulas for numerical differentiation,
integration, and numerical solution of ordinary and partial differential equations, etc.
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Figure 1: Interpolation

Thus the graph (Fig. 1) of the interpo-
lating polynomial φ(x) is confined within
the region bounded by y = f(x) − ε and
y = f(x) + ε for all x ∈ (a, b). This the-
orem does not guarantee the existence of an
interpolating polynomial, and in fact, it is
not obvious that such a polynomial will ex-
ist for any arbitrary table of values. Polyno-
mial approximation has wide important uses
because

THEOREM 2. Given any real valued function f(x) and n+ 1 distinct points x0, x1, · · · , xn there
exists unique polynomial of maximum degree nwhich interpolates f(x) at the points x0, x1, · · · , xn.

Proof: Any polynomial f(x) which has (n + 1) distinct zeros x0, x1, · · · , xn can be factorized
as

f(x) = (x− x0)(x− x1) · · · (x− xn)q(x)

where q(x) is a polynomial such that either degree of q(x) is 0 or degree of q(x) = degree of
f(x)−(n+1). Let φ(x) and ψ(x) be two polynomials of maximum degree n and both interpolates
f(x) at the (n + 1) distinct points (x0, y0), · · · , (xn, yn). Define r(x) = φ(x) − ψ(x) then r(x)

is a polynomial of maximum degree n and

r(xi) = φ(xi)− ψ(xi) = yi − yi = 0; i = 0, 1, · · · , n.

This shows that r(x) has (n + 1) distinct zeros. But r(x) is of maximum degree n, so that r(x)

can have only n zeros. By fundamental theorem of algebra “a polynomial of degree n has at most
n roots unless it is identically zero”, i.e.,

r(x) = 0⇒ φ(x) = ψ(x)

and the polynomial is unique. 2

Since the polynomial of degree n has n + 1 coefficients, we can calculate these coefficients
in such a way that the polynomial fitted the given function at n + 1 distinct points. Hence this
theorem assures the existence and method of construction of unique polynomial of the prescribed
degree. Practically we derive various interpolation formulae and uniqueness says they are actually
different forms of the same polynomial. Thus the problem of polynomial interpolation is now
completely solved.

THEOREM 3. [Error in approximating a function by a polynomial] Let a real valued function
f(x) ∈ Cn+1[a, b] be prescribed at the (n+1) known distinct interpolating points x0, x1, · · · , xn.
Then the error in approximating f(x) by the interpolating polynomial φ(x) of maximum degree n
which passes through the point (xk, yk) satisfying yk = f(xk) : k = 0(1)n is given by

E(x) = f(x)− φ(x) =
π(x)fn+1(ξ)

(n+ 1)!
(1)

where min
i
{xi, x} < ξ < max

i
{xi, x} and π(x) = (x− x0) · · · (x− xn).
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3 Interpolation

Proof: When f(x) is approximated by φ(x), truncation error or error of approximation occurs
due to using a finite degree polynomial. If x is the node point then it is trivial. When x is not a
node point, define an auxiliary function by

F (z) = f(z)− φ(z)− kπ(z); k =
f(x)− φ(x)

π(x)

where f(x) is the function from which the data points are sampled yi = f(xi). Now F (z) ∈
Cn+1[a, b] as f(z) and φ(z) are so. Also

F (xi) = f(xi)− φ(xi)− kπ(xi) = 0; i = 0, 1, · · · , n

and for an arbitrary chosen point z = x(6= xi) we have

F (x) = f(x)− φ(x)− kπ(x) = 0.

Hence the function F (z) has (n+ 2) distinct roots in the interval I = [x0, xn]. By Roll’s theorem
F
′
(z) must have (n + 1) distinct roots in I , and in general F j(z) have n + 2 − j zeros in I; j =

0, 1, · · · , n+ 1. Let ξ be one such root. Thus

Fn+1(ξ) = 0 ⇒ fn+1(ξ)− k(n+ 1)! = 0⇒ k =
fn+1(ξ)

(n+ 1)!
a < ξ < b.

which gives the truncation error formula (1). 2

RESULT 1. It must be realized that E(x) gives an upper bound for the error while the actual error
may be smaller. Eq. (1) has two components:

(i) First component, depends only on the choice of the tabular points x0, x1, · · · , xn, but inde-
pendent of the interpolation function. If they are located too far apart, then the value of the
factor π(x) will be too large. Moreover, the oscillation of the approximating polynomial
may attain too big amplitudes which may result in totally absurd result.

(ii) The second component is the value of the derivative f (n+1)(ξ) in the entire interval [x0, xn]

of interest. Its value should be remain small in the given interval otherwise, the magnitudes
of the error R(x) may be too large.

second part f (n+1)(ξ) which depends on the function being interpolated, but is essentially
independent of the choice of interpolation points.

Since we seldom know f (n+1)(ξ), the truncation error formula is of limited use. However, it does
give the order of the error if |f (n+1)(ξ)| is bounded. If f is known analytically, then an upper
bound of |f (n+1)(x)| can be found over an entire interval [x0, xn]. Therefore, we can find an
upper bound of the truncation error using Eq. (1).

RESULT 2. Let the distinct arguments are equally spaced i.e., xi = x0+ih; i = 0, 1, . . . , n;h > 0.
Let x = x0 + uh we have,

x− x0 = uh;x− x1 = x− x0 + x0 − x1 = uh− h = (u− 1)h; · · · ;

x− xn = x− x0 + x0 − xn = uh− nh = (u− n)h

Therefore, using Eq.(1), we get the truncation error

E(x) =
uh · (u− 1)h · · · (u− n)h

(n+ 1)!
fn+1(ξ) =

u(u− 1) . . . (u− n)

(n+ 1)!
hn+1fn+1(ξ). (2)
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4 Interpolation

RESULT 3. Since f(x) is generally unknown, the above formula is almost useless in practical
computation. Now, by Lagrange mean value theorem, we have

4f(x) = f(x+ h)− f(x) = hf ′(ξ),

h is very small and so, if fn+1(x) does not vary too rapidly in [x0, xn],

hn+1fn+1(ξ) ≈ 4n+1f(x0) = 4n+1y0.

Thus, the suitable form for computation of error is:

E(x) ' u(u− 1) · · · (u− n)

(n+ 1)!
4n+1y0. (3)

which is used in most practical purposes.

EXAMPLE 1. If linear interpolation is used to interpolate the function f(x) =
2√
π

∫ x

0
e−t

2/2dt,

show that the error in such interpolation, using the data (x0, f0) and (x1, f1) can not exceed
(x1 − x0)2

4
√
πe

.

Solution: Using Eq.(2), the truncation error in the linear interpolation is given by

|E(x)| ≤ 1

2!
max

∣∣∣(x− x0)(x− x1) f ′′(ξ)
∣∣∣; ξ ∈ (x0, x1)

Let g(x) = (x−x0)(x−x1). Setting g′(x) = 0, we obtain the critical point of g(x) as x = 1
2(x0+

x1). Hence, the maximum value of |g(x)| occurs at x = 1
2(x0 +x1) and |g(x)|max = 1

4(x0−x1)2.
Also,

f ′(x) =
2√
π
e−x

2/2; f ′′(x) = − 2x√
π
e−x

2/2; f ′′′(x) =
2√
π

(x2 − 1)e−x
2/2.

For optimal value of f ′′(x), we have f ′′′(x) = 0 gives x = ±1 and the maximum value of f ′′(x)

occurs at a = −1. Therefore

max |f ′′(x)| = 2√
π
e−1/2 =

2√
eπ
,

∴ |E| ≤ 1

2!
· 1

4
(x0 − x1)2 · 2√

eπ
=

(x1 − x0)2

4
√
πe

.

EXAMPLE 2. Determine the space h in a table of equally spaced values of the function y = loge x

between 1 and 2 so that the interpolation with a linear interpolation in this table will yield a
desired accuracy of order 10−6.

Solution: The truncation error in the linear interpolation is given in Eq.(3) as

|E(x)| = |u(u− 1)|h2

2!
|f ′′(ξ)| ≤ M.h2

8
.

Since f(x) = loge x, so f ′′(x) = − 1
x2

and so, |f ′′(x)| ≤ 1 for x ∈ [1, 2]. Forth the desired
accuracy of order 10−6, we must have,

h2

8
< 0.5× 10−7 ⇒ h < 6.32456× 10−4.
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5 Interpolation

EXAMPLE 3. Determine the step size h in a table of equally spaced values of the function f(x) =√
x in [1, 2], so that interpolation with a second degree polynomial in this table is less than 5 ×

10−8.

Solution: By assumption,the table will contain yi with xi = 1 + ih, i = 0, 1, · · · , n where
h = 2−1

n . As in Eq.(2), the truncation error in quadratic polynomial which interpolates f(x) at
xi−1, xi, xi+1 is

E(x) = (x− xi−1)(x− xi)(x− xi+1)
f ′′′(ξ)

3!
; ξ ∈ (xi−1, xi+1)

∴ |E(x)| ≤ M3

6
max

x∈[xi−1,xi+1]

∣∣∣(x− xi−1)(x− xi)(x− xi+1)
∣∣∣;M3 = max |f ′′′(ξ)|

≤ M3

6
max

u∈[−h,h]

∣∣∣(u+ h)u(u− h)
∣∣∣ =

M3

6
max

u∈[−h,h]

∣∣∣u(u2 − h2)
∣∣∣

Let g(u) = u(u2−h2). Setting g′(u) = 0, we obtain the critical point of g(u) as u = ± h√
3
. Hence,

the maximum value of |g(u)| occurs at u = h√
3

and |g(u)|max =
h3

3
√

3
. Also as f(x) =

√
x so

f ′′′(x) = 3
8x
− 5

2 ; max
1≤x≤2

|f ′′′(x)| ≤ 3
8 . Thus

|E(x)| ≤ M3

6
max

u∈[−h,h]

∣∣∣u(u2 − h2)
∣∣∣ =

3/8

6
· h

3

3
√

3
=

h3

24
√

3
.

Given ε = 5× 10−8 as the accuracy, So the step size h is given by

h3

24
√

3
< ε = 5× 10−8 ⇒ h < 0.012762.

2 Newton-Gregory’s Form of the Interpolating Polynomial

Let y = f(x) be not given explicitly but takes the values y0, · · · , yn corresponding to the (n+ 1)

usually increasing sequence of equally spaced arguments as x0 + ih, i = 0, 1, · · · , n. We want
to determine the value of y at some point x ∈ (x0, xn) − {x0, x1, · · · , xn}. Here we to discuss
actually two table oriented interpolation formulae.

2.1 Newton’s Forward Difference Formula

Newton’s forward interpolation formula is a simple polynomial from which we are to calculate
the value of y for a given non tabulated value of x, which lies near the beginning of the tabular
values.

Let the polynomial φ(x) of degree n be written in the form

φ(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0) · · · (x− xn−1)
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6 Interpolation

where the coefficients ai’s are constants, to be determined so as to agree the interpolating condi-
tions yi = f(xi) = φ(xi); i = 0, 1, · · · , n. Substituting in the successive values we get

y0 = φn(x0) = a0 ⇒ a0 = y0.

y1 = φn(x1) = a0 + a1(x1 − x0)⇒ a1 =
y1 − y0

h
=

∆y0

h
y2 = φn(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

⇒ a22!h2 = y2 − y0 − 2∆y0 = (E − 1)2y0 = ∆2y0 ⇒ a2 =
∆2y0

2!h2

and similarly an =
∆ny0

n!hn
. Using these values φ(x) can be written as

φ(x) = y0 +
x− x0

h
∆y0 +

(x− x0)(x− x1)

2!h2
∆2y0 + · · ·+ (x− x0) · · · (x− xn−1)

n!hn
∆ny0

=

n∑
i=0

1

i!hi
4iy0

i−1∏
j=0

(x− xi)

which is the Newton’s (Newton-Gregory) forward difference formula for the interpolating polyno-
mial and it is useful to interpolate near the beginning of a set of tabular values.

For practical purpose, let us linearly change the origin and scale as u =
x− x0

h
⇒ x−x0 = uh,

where the dimensionless variable u(−1 ≤ u ≤ 1) is called a phase. Then

x− x1 = (x− x0)− (x1 − x0) = uh− h = (u− 1)h

...

x− xn = (x− x0)− (xn − x0) = uh− nh = (u− n)h.

Hence the interpolation formula can be written in more convenient form as

φ(x) = y0 + u∆y0 +
u(u− 1)

2!
42y0 + . . .+

u(u− 1) . . . (u− n+ 1)

n!hn
∆ny0

=
n∑
i=0

4iy0

i−1∏
j=0

u− j
j + 1

=
n∑
i=0

(
u

i

)
4iy0 (4)

where the coefficient of4’s are binomial coefficients.

RESULT 4. In terms of factorial notation Eq. (4) can be written as

φ(x) = y0 +
u(1)

1!
4y0 +

u(2)

2!
42y0 + · · ·+ u(n)

n!
4ny0

(i) The point x0 is known as starting point of the formula (4). The starting point may be any
tabular values but then the formula will contain only those values which come after the

value chosen as starting point. 1, u,

(
u

2

)
, · · · , are independent of the problems, called the

coefficients of the formula.
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7 Interpolation

(ii) It is called the ‘forward’ interpolation formula because it contains values of the tabulated
function from y0 onward to the right(forward from y0) and none to the left of the value.
This formula can not be used for interpolating when the values of arguments are not equally
spaced and when the non tabulated given value of x lies in the bottom of the table.

Error estimate : To find the error committed in approximating f(x) by the polynomial φ(x), we
have from Equation (1), the remainder or truncation error or simply error is

Rn+1(x) =
π(x)fn+1(ξ)

(n+ 1)!
= (x− x0)(x− x1) · · · (x− xn)

fn+1(ξ)

(n+ 1)!

where min{x, x0, x1, · · · , xn} < ξ < max{x, x0, x1, · · · , xn}. According to Equation (??), we
have f (n+1)(ξ) ≈ ∆n+1(x0)

hn+1 and the above equation can be written as

Rn+1 '
u(u− 1) · · · (u− n)

(n+ 1)!
∆n+1y0 = An(u)4n+1y0 (5)

where, An(u) = u(u−1)···(u−n)
(n+1)! . If u ∈ (0, 1), then max |u(u − 1)| =

1

4
and max |(u − 2)(u −

3) · · · (u−n)| = n!. Also, in the last significant figure4n+1y0 ≤ 9 so that |Rn+1| ≤
9

4(n+ 1)
<

1 for n > 2 and 0 < u < 1. Hence the maximum truncation error in forward formula is numer-
ically less than 1 in the last significant figure. Again for 0 < u < 1 we have for extrapolation

|An(−u)| =
∣∣∣u(u+ 1) · · · (u+ n)

(n+ 1)!

∣∣∣. Also |An(u)| > |An(−u)|, shows that the use of interpola-

tion in computing a function value is always preferable than the use of extrapolation.

EXAMPLE 4. Given a table of values of 1
x , find f(2.72) using quadratic interpolation.

x 2.7 2.8 2.9

f(x) 0.3704 0.3571 0.3448

Find also the estimate of the error.

Solution: The forward difference table is given below. Here u =
x− 2.70

0.1
= 10(x− 2.7).

x y 4y 42y

2.7 0.3704

−0.0133

2.8 0.3571 0.0010

−0.0123

2.9 0.3448

Using formula (4), we get

f(x) = y0 + u4y0 +
u(u− 1)

2!
42y0 + · · ·

= 0.3704 + 10(x− 2.7)× (−0.0133)

+
1

2!
× 100(x− 2.7)(x− 3.7)× 0.0010

= 0.05x2 − 0.453x+ 0.8586.
When x = 2.72 then u = 2.72−2.70

0.1 = 0.2 and so,

f(2.72) = 0.3704 + 0.2× (−0.0133)− 0.2× 0.8

2
× 0.0010 ≈ 0.3677.

Since f(x) = 1
x , so f ′′′(x) = − 6

x4
and so the estimation of error is given by,

|E(x)| ≤ h3

3!
max

∣∣∣u(u− 1)(u− 2)
∣∣∣max

∣∣∣f ′′′(ξ)∣∣∣
≤ (0.1)3

6
× (0.2× 0.8× 1.8)× 6

(2.72)4
≈ 0.5× 10−5.
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8 Interpolation

Listing 1: Program for Newton Forward Interpolation Formula

1 % Program f o r Newton ’ s Forward I n t e r p o l a t i o n Formula
2 n= i n p u t ( ’ E n t e r t h e number o f s u b i n t e r v a l s n : ’ ) ;
3 x= i n p u t ( ’ E n t e r t h e v a l u e s o f x : ’ ) ;
4 y= i n p u t ( ’ E n t e r t h e v a l u e s o f y : ’ ) ;
5 xp= i n p u t ( ’ E n t e r t h e i n t e r p o l a t i n g p o i n t xp : ’ ) ;
6 f o r i =1 : n+1
7 f p r i n t f ( ’\n %d %d ’ , x ( i ) , y ( i ) ) ;
8 end
9 h=x ( 2 )−x ( 1 ) ;

10 u =( xp−x ( 1 ) ) / h ;
11 f o r j =1 : n+1
12 dy ( j ) =y ( j ) ;
13 end
14 prod =1;
15 sum=y ( 1 ) ;
16 f o r i =1 : n+1
17 f o r j = 1 : ( n +1)− i
18 dy ( j ) =dy ( j +1)−dy ( j ) ;
19 end
20 prod = prod *( u−i +1) / i ;
21 sum=sum+ prod *dy ( 1 ) ;
22 end
23 f p r i n t f ( ’\n t h e v a l u e o f y a t x=% 1 4 . 5 f i s % 13 .11 f \n ’ , xp , sum

) ;

2.2 Newton’s Backward Difference Formula

Newton’s backward interpolation formula is an simple expression from which we are to calculate
the value of the entry y for a given non tabulated value of x, which lies near the end of the tabular
values. Consider a polynomial φ(x) of maximum degree n as

φ(x) = a0 + a1(x− xn) + a2(x− xn)(x− xn−1) + . . .+ an(x− xn) . . . (x− x1)

which coincides with the (n + 1) points (x0, y0), . . . , (xn, yn) and ai’s are constants to be de-
termined by the interpolating conditions yi = f(xi) = φn(xi); i = 0(1)n. Substituting the
successive values we have,

yn = φ(xn) = a0 ⇒ a0 = yn

yn−1 = φ(xn−1) = a0 + a1(xn−1 − xn)⇒ a1 =
yn − yn−1

h
=
∇yn
h

yn−2 = φ(xn−2) = a0 + a1(xn−2 − xn) + a2(xn−2 − xn)(xn−2 − xn−1)

= yn + 2∇yn + a22!h2 ⇒ a22!h2 = yn − 2yn−1 + yn−2 ⇒ a2 =
∇2yn
2!h2
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9 Interpolation

and similarly an =
∇nyn
n!hn

. Therefore

φ(x) = yn +
x− xn
h
∇yn +

(x− xn)(x− xn−1)

2!
∇2yn + . . .+

(x− xn) . . . (x− x1)

n!
∇ny0. (6)

which is Gregory-Newton’s backward difference interpolation formula, and it is useful to interpo-
late near the end of a set of tabular values. Now, setting v = x−xn

h , we can obtain

x− xn−1 = x− (xn − h) = (x− xn) + h = (v + 1)h

...

x− x1 = x− {xn − (n− 1)h} = (x− xn) + (n− 1)h = (v + n− 1)h

Hence the interpolation formula can be written as

φ(x) = yn + v∇yn +
v(v + 1)

2!
∇2yn + . . .+

v(v + 1) . . . (v + n− 1)

n!
∇nyn

=
n∑
i=0

(
v + i− 1

i

)
∇iyn =

n∑
i=0

(−1)i
(
−v
i

)
4iyn−i. (7)

In the case of practical numerical computation, instead of Equation (6), we should use Equation
(7) in order to ease the calculation involved with it.

(i) It is called ‘backward’ interpolation formula because the formula contains values of the
tabulated function from yn backward to the left and none to the right of the value yn. This
formula is look symmetrical with respect to the starting point yn.

(ii) The Newton’s backward interpolation formula is especially useful in extending a tabulation,
and for generating other formulas useful for advancing solution of differential equations. In
fact the forward and backward polynomials ending at the same difference entry are identical.

Error estimate : To find the error committed in approximating f(x) by the polynomial φ(x), we
have from Equation (1), the remainder or truncation error or simply error is

Rn+1(x) =
π(x)fn+1(ξ)

(n+ 1)!
= (x− x0)(x− x1) · · · (x− xn)

fn+1(ξ)

(n+ 1)!

where min{x, x0, x1, · · · , xn} < ξ < max{x, x0, x1, · · · , xn}. According to Equation (??), we
have f (n+1)(ξ) ≈ ∇

n+1yn
hn+1 and the above equation can be written as

Rn+1 '
v(v + 1) · · · (v + n)

(n+ 1)!
∇n+1yn = Bn(v)∇n+1yn (8)

where, Bn(v) = v(v+1)···(v+n)
(n+1)! . Since |An(−u)| = |Bn(v)|, the proper interpolation is always

preferable than extrapolation.

EXAMPLE 5. The population(in lakhs) of a certain city according to census is given below:
Year 1941 1971 1981 1991 2001

Population 46 66 81 93 101
Extrapolate the population for the year 2007.
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10 Interpolation

Solution: We take 1961 as year zero as shown in table below.
Difference table for Example 5

x y 4y 42y 43y 44y

1961 0 46

20

1971 1 66 −5

15 2

1981 2 81 −3 −3

12 −1

1991 3 93 −4

8

2001 4 101

Here h = 10, xn = 2001, v = 2007−2001
10 =

0.6. Since the value in last column is greater
than the lower order difference, the last dif-
ference may be negative.

φ(2007) = 101 + (0.6)(8) +
(0.6)(1.6)

2!
(−4)

+
0.6(0.6)(2.6)

3!(−1)
= 105.8− 1.92− 0.416

= 103.46 lakhs

EXAMPLE 6. In a class of 100, the students are placed into the following categories according to
the marks they have obtained in a test out of 60.

Marks obtained (x) 0− 9 10− 19 20− 29 30− 39 40− 49 50− 59

Number of Students (y) 3 12 15 35 25 10

Find by using Newton’s backward formula, the number of students who have secured 75% and
above marks.

Solution: We have to find the number of students who have secured 75% of 60 i.e.
x y 4y 42y 43y 44y

Less 10 3

12

Less 20 15 3

15 17

Less 30 30 20 −47

35 −30

Less 40 65 −10 25

25 −5

Less 50 90 −15

10

Less 60 100

75×60
100 = 45 marks and above. We construct

the difference table as follows. Here, h =

10, xn = 50 so, v = 45−50
10 = −0.5. Here,

we should leave out 3rd and 4rd differences
as they start increasing

φ(x) = yn + v∇yn +
v(v + 1)

∇2yn
= 77.5 + 1.25 = 78.75

Thus 79 students got less than 45 marks.
Therefore, (100 − 79) = 21 students have
got 75% marks and above.

Listing 2: Program for Newton Backward Interpolation Formula

1 % Program f o r Newton ’ s Backward I n t e r p o l a t i o n Formula
2 n= i n p u t ( ’ E n t e r t h e number o f s u b i n t e r v a l s n ’ ) ;
3 x= i n p u t ( ’ E n t e r t h e v a l u e s o f x ’ ) ;
4 y= i n p u t ( ’ E n t e r t h e v a l u e s o f y ’ ) ;
5 xp= i n p u t ( ’ E n t e r t h e i n t e r p o l a t i n g p o i n t xp ’ ) ;
6 f o r i =1 : n+1
7 f p r i n t f ( ’\n %d %d ’ , x ( i ) , y ( i ) ) ;
8 end
9 h=x ( 2 )−x ( 1 ) ;

10 v =( xp−x ( n +1) ) / h ;
11 f o r j =1 : n+1
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11 Interpolation

12 dy ( j ) =y ( j ) ;
13 end
14 prod =1;
15 sum=y ( n +1) ;
16 f o r i =1 : n
17 f o r j = 1 : ( n +1)− i
18 dy ( j ) =dy ( j +1)−dy ( j ) ;
19 end
20 prod = prod *( v+ i −1) / i ;
21 sum=sum +( prod *dy ( n+1− i ) ) ;
22 end
23 f p r i n t f ( ’\n t h e v a l u e o f y a t x=% 1 4 . 5 f i s % 13 .11 f \n ’ , xp , sum

) ;

3 Lagrange’s Interpolation Formula

The problem of determining a polynomial φ(x) of maximum degree n that agrees with the (n+1)

-

6

x1 x2 x2 xk xn x

y

(a)

j �
y = φ(x) y = f(x)

6

- x

ln,k(x) r1

× × × × × × ×x0

x1 xk−1

xk

xk+1

xn

(b)

Figure 2: Lagrange interpolating polynomial

distinct points (x0, y0), (x1, y1), · · · , (xn, yn) as approximating a function f for which f(xk) =

yk by means of a nth degree polynomial interpolation depicted in the Fig.(2 (a)). Let φ(x) be of
the form

φ(x) = a0(x− x1)(x− x2) · · · (x− xn) + a1(x− x0)(x− x2) · · · (x− xn)

+ a2(x− x0)(x− x1) · · · (x− xn) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1)

for appropriate constants a0, a1, · · · , an. To determine the constants, we use the interpolating
condition yi = f(xi) = φ(xi); i = 0(1)n. Thus

y0 = φ(x0) = a0(x0 − x1)(x0 − x2) · · · (x0 − xn)⇒ a0 =
y0

(x0 − x1)(x0 − x2) · · · (x0 − xn)
.

y1 = φ(x1) = a1(x1 − x0)(x1 − x2) . . . (x1 − xn)⇒ a1 =
y1

(x1 − x0)(x1 − x2) · · · (x1 − xn)
,
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12 Interpolation

and so on. Lastly an =
yn

(xn − x0)(xn − x1) . . . (xn − xn−1)
. Thus the Lagrange interpolation

formula can be written as

φ(x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0 +

(x− x0)(x− x2) · · · (x− xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
y1 + · · ·

+
(x− x0)(x− x1) · · · (x− xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn

=
n∑
i=0

 n∏
j=0,j 6=i

x− xj
xi − xj

 yi =

n∑
i=0

li(x)yi (9)

where, we define the functions li(x) as

li(x) =


n∏

j=0,i 6=j

x− xj
xi − xj

; i = 0(1)n

π(x)

(x− xi)π′(xi)
; π(x) =

n∏
i=0

(x− xi)
(10)

The interpolating polynomial given by Eq. (9) with li(x) defined by Eq. (10) is called the La-
grange fundamental polynomial. Now,

l0(x0) =
(x0 − x1)(x0 − x2) · · · (x0 − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
= 1

l0(x1) =
(x1 − x1)(x1 − x2) · · · (x1 − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
= 0

...

l0(xn) = 0

li(x) is zero at every tabular argument except xk, and 1 at xk; in other words

li(xk) = δik =

{
1; if i = k

0; if i 6= k

as depicted in the Fig.(2 (b)). The Lagrange interpolating polynomial (9) can also be written as∣∣∣∣∣∣∣∣∣∣
φ(x) 1 x x2 . . . xn

y0 1 x0 x2
0 . . . xn0

...
. . .

...
yn 1 xn x2

n . . . xnn

∣∣∣∣∣∣∣∣∣∣
= 0. (11)

Deduction 3.1. Let x = x0 + uh and xi = x0 + ih, the Lagrangian functions are given by

li(x) =
u(u− 1) · · · (u− i+ 1)(u− i− 1) · · · (u− n)

i(i− 1) · · · 1 · (−1)(−2) · · · (−n− i)

= (−1)n
u(u− 1) · · · (u− n)

n!

(−1)i

u− i

(
n

i

)
; i = 0(1)n.
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13 Interpolation

These functions depend only on n and not on the particular table and may be tabulated for different
values of n. Thus the formula (9) for equally spaced points is

φ(x) =

n∑
i=0

(−1)n+i

i!(n− i)!
u(u− 1) · · · (u− n)

u− i
yi.

Thus the method is applicable to both equispaced and unequispaced arguments. It is used to derive
Newton-Cote’s formula in numerical integration.

Error : There are two kinds of errors: round-off error and truncation error. The truncation
error is due to using a finite degree polynomial. Let f(x) ∈ Cn+1[x0, xn]. The truncation error in
Lagrange formula is

E(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi); x0 < ξ < xn.

Advantage : The major advantages of Lagrange interpolation formula are

(i) it does not require the construction of a difference table.

(ii) Also, it is applicable in any part of the table and for this, the values of the argument need
not be equidistant and ordered.

(iii) It is also used to find the value of the independent variable x corresponding to a given vale
of the function y, known as inverse interpolation.

Disadvantages : The major pitfalls of the Lagrange’s interpolation are

(i) If one or more additional tabular point is added at the tabular data the all Lagrangian poly-
nomials li(x) are to be newly constructed and without of already known polynomial φ(x).
Such an interpolating polynomial is said to posses permanence property.

(ii) For computational purpose, it can be easily seen that Lagrange interpolation polynomial is
not very efficient. This can be measured by the efficiency of any algorithm by counting the
number of floating-point operations involved.

(a) To compute (n+1) factors (x−x0), . . . , (x−xn) for π(x) we have (n+1) subtractions
and n multiplications.

(b) To compute (x − xi)π′(xi), there are (n + 1) factors, so, (n + 1) subtractions and n
multiplications are required.

(c) Thus, to compute li(x) =
π(x)

(x− xi)π′(xi)
,we shall require (n+1)+(n+1) = 2(n+1)

subtractions, n + n = 2n multiplications and 1 division. Thus the total number of
operations required to calculate li(x) are 2(n+ 1) + 2n+ 1 = 4n+ 3.

(d) 1 multiplication required to multiply li(x) by yi. Thus to calculate li(x)yi, we have
required (4n+ 3) + 1 = 4n+ 4 operations.

(e) There are (n+ 1) such terms li(x)yi, so there are (n+ 1) such multiplications. Thus
the no of arithmetic operations required is = (n+ 1)(4n+ 4).
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14 Interpolation

(f) n additions required for
n∑
i=0

li(x)yi.

(iii) The drawback of the method is that even for a moderately large value of n, it maybe a
tedious job to represent the polynomial as power series in x due to multiplication of n
factors, (n+ 1) number of times. Therefore the total number of arithmetic operations

= (n+ 1)(4n+ 4) + n = 4n3 + 12n2 + 13n+ 1.

This is actually referred to as the complexity of the algorithm.

EXAMPLE 7. Find the unique polynomial of degree 2 or less, which fits the data (0, 1), (1, 3) and
(3, 55). Find the bound on the error.

Solution: Here, x0 = 0, x1 = 1, x3 = 3; y0 = 1, y1 = 3 and y2 = 55. Using Eq. (10), the
Lagrange fundamental polynomials are given by

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1)(x− 3)

(−1) · (−3)
=

1

3
(x2 − 4x+ 3)

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 0)(x− 3)

(1) · (−2)
=

1

2
(3x− x2)

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 1)

(3) · (2)
=

1

6
(x2 − x)

Therefore, using Eq. (9), the Lagrange quadratic interpolating polynomial is given by

φ(x) = l0(x) · y0 + l1(x) · y1 + l2(x) · y2

=
1

3
(x2 − 4x+ 3) · 1 +

1

2
(3x− x2) · 3 +

1

6
(x2 − x) · 55

=
1

6

[
2(x2 − 4x+ 3) + 9(3x− x2) + 55(x2 − x)

]
= 8x2 − 6x+ 1.

The truncation error in this formula is given by

|E(x)| = |x(x− 1)(x− 3)|
3!

|f ′′′(ξ)| ≤ 1

6
max

0≤x≤3
|f ′′′(x)|

[
max

0≤x≤3
|x(x− 1)(x− 3)|

]
.

Here f(x) is unknown, so take M3 = max
0≤x≤3

|f ′′′(x)|. The maximum value of |x(x − 1)(x − 3)|

occurs at x = 2.21525 and max
0≤x≤3

|x(x−1)(x−3)| = 2.11261179. Therefore, the truncation error

is given by

|E(x)| ≤ 1

6
M3 · (2.11261179) = 0.3521M3.

EXAMPLE 8. Calculate log(47) by Lagrange interpolation formula

x : 40 42 45 48 49 50

f(x) : 1.60206 1.6232493 1.6532126 1.6812413 1.690196 1.69897

Find the bound on the truncation error.
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15 Interpolation

Solution: Here, the pair of points (xi, yi); i = 0, 1, · · · , 5 as (40, 1.60206), (42, 1.6232493),

(45, 1.6532126), (48, 1.6812413), (49, 1.690196) and (50, 1.69897) are given.

l0(x) =
(x− x1)(x− x2)(x− x3)(x− x4)(x− x5)

(x1 − x0)(x2 − x0)(x3 − x0)(x4 − x0)(x5 − x0)

or, l0(47) =
(47− 42)(47− 45)(47− 48)(47− 49)(47− 50)

(40− 42)(40− 45)(40− 48)(40− 49)(40− 50)
=
−60

−7200
= 0.008333

Similarly, l1(47) =
−84

2016
= −0.041667, l2(47) =

−210

−900
= 0.233333, l3(47) =

420

288
=

1.458333, l4(47) =
210

−252
= −0.833333 and l5(47) =

140

800
= 0.175. Therefore, using Eq.

(9), we get

log(47) = (0.008333) · (1.60206) + (−0.041667) · (1.6232493) + (0.233333) · (1.6532126)

+(1.458333) · (1.6812413) + (−0.833333) · (1.690196) + (0.175) · (1.69897)

= 1.672098.

Hence log 47 = 1.6721, correct upto 4 decimal places. The truncation error in this formula is
given by

|E(x)| =
|(x− 40)(x− 42)(x− 45)(x− 48)(x− 49)(x− 50)|

6!
|f (vi)(ξ)|

≤ 1

6!
max

40≤x≤50
|f (vi)(x)|

∣∣∣(47− 40)(47− 42)(47− 45)(47− 48)(47− 49)(47− 50)
∣∣∣

≤ 7× 5× 2× 1× 2× 3

6!
max

40≤x≤50
|f (vi)(x)| = 7

12
max

40≤x≤50
|f (vi)(x)|.

f(x) = log10 x, then f (vi)(x) = − 5!

x6
log10 e. Therefore, max

40≤x≤50
|f (vi)(ξ)| = 1.272347 × 10−8

and it occurs at ξ = 40. Therefore, the truncation error is given by

|E| ≤ 7

12
× 1.272347× 10−8 = 7.742202× 10−9.

EXAMPLE 9. Find Lagrange’s polynomial for the function sinπx, when 0,
1

6
,
1

2
. Also, compute

the value of sin
π

3
with estimate of error.

Solution: Let, x0 = 0, x1 =
1

6
, x2 =

1

2
so that y0 = 0, y1 = sin

π

6
=

1

2
and y3 = sin

π

2
= 1.

Using Eq. (9), the Lagrange polynomial becomes,

φ(x) =

(
x− 1

6

)(
x− 1

2

)
(

0− 1
6

)(
0− 1

2

) × 0 +
(x− 0)

(
x− 1

2

)
(1

6 − 0)
(

1
6 −

1
2

) × 1

2
+

(x− 0)
(
x− 1

6

)
(1

2 − 0)
(

1
2 −

1
6

) × 1

= 0− 9

2
x(2x− 1) + x(6x− 1) = −3x2 +

7

2
x.
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16 Interpolation

To evaluate sin
π

3
, we have x = 1

3 . Therefore, using the above formula, sin
π

3
= φ(

1

3
) =

−3(
1

3
)2 +

7

2

1

3
≈ 0.83333. The truncation error in this formula is given by

|E(x)| =
|(x− 0)

(
x− 1

6

)(
x− 1

2

)
|

4!
|f (iv)(ξ)|

≤ 1

4!
max

0≤x≤ 1
2

∣∣∣(x− 0)
(
x− 1

6

)(
x− 1

2

)∣∣∣ max
0≤x≤ 1

2

|f (iv)(x)|.

Now max
0≤x≤ 1

2

|(x−0)(x− 1
6)(x− 1

2)| = 9.7806×10−3, occurs at x = 0.3692 and max
0≤x≤ 1

2

|f (iv)(x)| =

1. Thus the estimation of truncation error is given by

|E| ≤ 1

4!
× 9.7806× 10−3 × 1 = 4.07525× 10−4.

The exact value of sin π
3 = 0.86602, so the error is 0.03269.

Listing 3: Program for Lagrange Interpolation Formula

1 % Program f o r Lagrange I n t e r p o l a t i o n f o r m u l a
2 n= i n p u t ( ’ E n t e r t h e v a l u e o f n ’ ) ;
3 x= i n p u t ( ’ E n t e r t h e v a l u e s o f x ’ ) ;
4 y= i n p u t ( ’ E n t e r t h e v a l u e s o f y ’ ) ;
5 xp= i n p u t ( ’ E n t e r t h e i n t e r p o l a t i n g p o i n t xp ’ ) ;
6 sum =0;
7 f o r i =1 : n+1
8 f p r i n t f ( ’\n %f %f ’ , x ( i ) , y ( i ) ) ;
9 end

10 f o r i =1 : n+1
11 prod =1;
12 f o r j =1 : n+1
13 i f ( i ˜= j )
14 prod = prod *( xp−x ( j ) ) / ( x ( i )−x ( j ) ) ;
15 end
16 end
17 sum=sum+y ( i ) * prod ;
18 end
19 f p r i n t f ( ’\n t h e v a l u e o f y a t x=% 1 4 . 5 f i s % 13 .11 f \n ’ , xp , sum ) ;

EXAMPLE 10. A certain function f(x) defined on the interval (0, 1) is such that f(0) = 0, f(1
2) =

−1 and f(1) = 0. Find the quadratic polynomial φ(x) which agrees with f(x) for x = 0, 1
2 , 1. If∣∣∣d3f

dx3

∣∣∣ ≤ 1 for 0 ≤ x ≤ 1, show that |f(x)− φ(x)| ≤ 1
12 for 0 ≤ x ≤ 1.

Solution: Here f(0) = 0, f(1
2) = −1 and f(1) = 0. Therefore, the Lagrange quadratic interpo-
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lating polynomial is given by

φ(x) =
(x− 1

2)(x− 1)

(0− 1
2)(0− 1)

× 0 +
(x− 0)(x− 1)

(1
2 − 0)(1

2 − 1)
× (−1) +

(x− 0)(x− 1
2)

(1− 0)(1− 1
2)
× 0

= 0− 4x(x− 1) + 0 = −4x+ 4x2.

The truncation error in this formula is given by

|E(x)| =
|(x− 0)

(
x− 1

2

)
(x− 1)|

3!
|f ′′′(ξ)|

≤ 1

3!
max

0≤x≤1

∣∣∣(x− 0)
(
x− 1

2

)
(x− 1)

∣∣∣ max
0≤x≤1

|f ′′′(x)|.

Now, for 0 ≤ x ≤ 1, we have,

|x(x− 1)| = |x(1− x)| =
∣∣∣∣14 − (x− 1

2
)2

∣∣∣∣ ≤ 1

4
< 1

0 ≤ 2x ≤ 2 ⇒ −1 ≤ 2x− 1 ≤ 1⇒ |2x− 1| ≤ 1.

Since,
∣∣∣d3fdx3

∣∣∣ ≤ 1 for 0 ≤ x ≤ 1,, the truncation error is given by

|E(x)| = |f(x)− φ(x)| ≤ 1

12
× 1× 1 =

1

12
.

THEOREM 4. Lagrangian interpolating polynomial is unique.

Proof: Let φ(x) and ψ(x) of maximum degree n, interpolate f(x) at (n + 1) distinct points
x0, · · · , xn. Therefore φ(xi) = f(xi); and ψ(xi) = f(xi); i = 0, 1, 2, · · · , n. Consider another
polynomial g(x) = φ(x)− ψ(x). Then g(x) is a polynomial of degree ≤ n. But

g(xi) = φ(xi)− ψ(xi) = f(xi)− f(xi) = 0; i = 0(1)n.

This shows that g(x) vanishes at (n + 1) distinct points. But g(x) is a polynomial of degree n
which can have only n zeros. Thus the incident is possible if g(x) = 0⇒ φ(x) = ψ(x).

Hence Lagrange polynomial is unique. 2

THEOREM 5. The Lagrange interpolation formula can be written as y =
n∑
i=0

π(x)

(x− xi)π′(xi)
yi,

where π(x) = (x− x0)(x− x1) · · · (x− xn).

Proof: Since π(x) = (x− x0)(x− x1) · · · (x− xn), so

π′(x0) =
[
(x− x1) · · · (x− xn)

d

dx
(x− x0) + (x− x0)

d

dx
{(x− x1) · · · (x− xn)}

]
x=x0

= (x0 − x1)(x0 − x2) · · · (x0 − xn).

Using, the result we get

l0(x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)

=
(x− x0)(x− x1)(x− x2) · · · (x− xn)

(x− x0)(x0 − x1)(x0 − x2) · · · (x0 − xn)
=

π(x)

(x− x0)π′(x0)
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Similarly, π′(x1) = (x1 − x0)(x1 − x2) · · · (x1 − xn). Thus

l1(x) =
(x− x0)(x− x1)(x− x2) · · · (x− xn)

(x− x1)(x1 − x0)(x1 − x2) · · · (x1 − xn)
=

π(x)

(x− x1)π′(x1)

Similarly, for others. Therefore, using Eq. (9), the Lagrange interpolating formula can be written

φ(x) =
n∑
i=0

li(x)yi =
n∑
i=0

π(x)

(x− xi)π′(xi)
yi.

as a weighted sum of the given ordinates. This compact form of Lagrange formula is used in
practical computations. 2

THEOREM 6. The sum of the Lagrange coefficients is unity.

Proof: Here π(x) = (x− x0)(x− x1) · · · (x− xn). Thus,

1

π(x)
=

1

(x− x0)(x− x1) · · · (x− xn)
=

a0

x− x0
+

a1

x− x1
+ · · ·+ an

x− xn
or, a0(x− x1)(x− x2) · · · (x− xn) + a1(x− x0)(x− x2) · · · (x− xn)

+ · · ·+ an(x− x0)(x− x1) · · · (x− xn−1) = 1 (12)

where a0, a1, · · · , an are independent of x, because to each linear and non repeated factor x−xr of
π(x) there corresponds a partial fraction

ar
x− xr

, where ar is a constant and 1
π(x) can be expressed

as a sum of such functions. Since this is an identity in x and is true for all values of x, we can
obtain the values of ai from (12) by putting successively x = xi. Therefore,

a0(x0 − x1)(x0 − x2) · · · (x0 − xn) = 1⇒ a0π
′(x0) = 1⇒ a0 =

1

π′(x0)
,

a1(x1 − x0)(x1 − x2) · · · (x1 − xn) = 1⇒ a1π
′(x1) = 1⇒ a1 =

1

π′(x1)
,

and similarly an = 1
π′(xn) . So from (12) we get,

1

(x− x0)π′(x0)
+

1

(x− x1)π′(x1)
+ · · ·+ 1

(x− xn)π′(xn)
=

1

π(x)

or,
π(x)

(x− x0)π′(x0)
+

π(x)

(x− x1)π′(x1)
+ · · ·+ π(x)

(x− xn)π′(xn)
= 1

or,
n∑
i=0

π(x)

(x− xi)π′(xi)
= 1.

Practically it is very helpful for checking calculations. 2

THEOREM 7. Lagrangian fundamental functions are invariant under a linear transformation of
the independent variable.
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19 Interpolation

Proof: If we make a linear transformation x′ = α + βx, where α is the origin and β is called
scale. Thus, the new nodes are x

′
i = α+ βxi; i = 0(1)n. So

x′ − x′i = β(x− xi)⇒ (x− xi) = β−1(x′ − x′i)

π(x) =
n∏
i=0

(x− xi) = β−n
n∏
i=0

(x′ − x′i) = β−nπ1(x′)

π(xi) =
n∏

r=0,r 6=i
(xi − xr) = β−n+1

n∏
r=0,r 6=i

(x′ − x′i) = β−n+1π′1(x′i).

Now, the Lagrangian functions are

li(x) =
π(x)

(x− xi)π′(xi)
=

β−nπ1(x′)

β−1(x′ − x′i)β−n+1π′1(xi)

=
π1(x′)

(x′ − x′i)π′1(xi)
= li(x

′); i = 0(1)n

which is independent of α and β. When the pair of data (xi, yi) are numerically large using this
transformation we can calculate y easily. 2

EXAMPLE 11. Determine the interpolation of f(x) on the set of (distinct) points x0, x1, · · · , xn
by,

n∑
k=0

lk(x)f(xk), find an expression for
n∑
k=0

lk(0)xn+1
k .

Solution: The Lagrange interpolating polynomial φ(x) on the set of distinct points x0, x1, · · · , xn
is given by Eq. (9),

φ(x) =
n∑
k=0

lk(x)f(xk) +
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi); x0 < ξ < xn, (i)

where, the Lagrange fundamental polynomial lk(x) are given by Eq. (10). The interpolating con-
ditions are φ(x) = f(x), at the points x0, x1, · · · , xn. Taking f(x) = xn+1, so that f (n+1)(ξ) =

(n+ 1)!. Therefore, form (i), we get

xn+1 =

n∑
k=0

lk(x)xn+1
k + (x− x0)(x− x1) · · · (x− xn)

Thus, the interpolating polynomial for f(x) = xn+1 at the interpolating points x0, x1, · · · , xn is
given by,

n∑
k=0

lk(x)xn+1
k = xn+1 − (x− x0)(x− x1) · · · (x− xn).

Taking x = 0, we obtain,
n∑
k=0

lk(0)xn+1
k = (−1)nx0x1 · · ·xn.

EXAMPLE 12. Use Lagrange interpolating polynomial, find the missing term in the following

table:
x: 0 1 2 3 4

y: 1 2 4 ? 16
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Solution:

l0(x) =
(x− 1)(x− 2)(x− 4)

(0− 1)(0− 2)(0− 4)
= −1

8
(x3 − 7x2 + 14x− 8)

l1(x) =
(x− 0)(x− 2)(x− 4)

(1− 0)(1− 2)(1− 4)
=

1

3
(x3 − 6x2 + 8x)

l2(x) =
(x− 0)(x− 1)(x− 4)

(2− 0)(0− 1)(0− 4)
= −1

4
(x3 − 5x2 + 4x)

l3(x) =
(x− 0)(x− 1)(x− 2)

(4− 0)(4− 1)(4− 2)
=

1

24
(x3 − 3x2 + 2x)

Thus, φ(x) ' 5
24x

3 − 1
8x

2 + 11
12x+ 1. Therefore, φ(3) = 8.25 and here the missing term is 8.25.

EXAMPLE 13. Express
3x2 + x+ 1

x3 − 6x2 + 11x− 6
as the sum of partial fractions.

Solution: Here x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3). We consider f(x) = 3x2 + x +

1 and tabulate its values for x = 1, 2, 3 as:
x 1 2 3

f(x) 5 15 31
The Lagrange’s interpolating

polynomial of f(x) for three points (1, 5), (2, 15), and (3, 31) is given by

f(x) =
(x− 2)(x− 3)

2
× 5 +

(x− 1)(x− 3)

−1
× 15 +

(x− 1)(x− 2)

2
× 31

=
5

2
(x− 2)(x− 3)− 15(x− 1)(x− 3) +

31

2
(x− 1)(x− 2).

Hence the partial fraction representation of the given function can be written as

3x2 + x+ 1

x3 − 6x2 + 11x− 6
=

5/2

x− 1
− 15

x− 2
+

31/2

x− 3
.

EXAMPLE 14. Using the three point Lagrange’s formula for the value x0, x0 + ε, x1 and tak-

ing ε → 0, show that the formula takes the from: f(x) =
(x1 − x)(x+ x1 − 2x0)

(x− x0)2
f(x0) +

(x− x0)(x1 − x)

x1 − x0)
f ′(x0) +

(x− x0)2

(x1 − x0)2
f(x1) +

1

6
(x− x0)2(x− x1)f ′′′(ξ);x0 < ξ < x1.
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Solution: The Lagrange formula for three arguments x0, x0 + ε, x1 with ε→ 0 is

f(x) = lim
ε→0

[
(x− x0 − ε)(x− x1)

(x0 − x0 − ε)(x0 − x1)
f(x0) +

(x− x0)(x− x1)

(x0 + ε− x0)(x0 + ε− x1)
f(x0 + ε)

+
(x− x0 − ε)(x− x0)

(x1 − x0)(x1 − x0 − ε)
f(x1) +

(x− x0)(x− x0 − ε)(x− x1)

3!
f ′′′(ξ)

]
= lim

ε→0

[
(x− x0 − ε)(x− x1)

−ε(x0 − x1)
f(x0) +

(x− x0)(x− x1)

(x0 + ε− x1)

{f(x0 + ε)− f(x0)

ε

}
+

(x− x0)(x− x1)

ε(x0 + ε− x1)
f(x0)

+
(x− x0 − ε)(x− x0)

(x1 − x0)(x1 − x0 − ε)
f(x1) +

(x− x0)(x− x0 − ε)(x− x1)

3!
f ′′′(ξ)

]
= lim

ε→0

x− x1

ε

[
(x− x0)(x0 − x1)− (x− x0 − ε)(x0 − x1 + ε)

(x0 − x1)(x0 − x1 + ε)

]
f(x0)

+
(x− x0)(x− x1)

(x0 − x1)
f ′(x0) +

(x− x0)2

(x1 − x0)2
f(x1) +

(x− x0)2(x− x1)

6
f ′′′(ξ)

= lim
ε→0

(x− x1)

[
(−x− 2x0 − x1)

(x0 − x1)(x0 − x1 + ε)

]
f(x0) +

(x− x0)(x− x1)

(x0 − x1)
f ′(x0)

+
(x− x0)2

(x1 − x0)2
f(x1) +

(x− x0)2(x− x1)

6
f ′′′(ξ)

=

[
(x1 − x)(x− 2x0 + x1)

(x0 − x1)2

]
f(x0) +

(x− x0)(x1 − x)

x1 − x0
f ′(x0)

+
(x− x0)2

(x1 − x0)2
f(x1) +

(x− x0)2(x− x1)

6
f ′′′(ξ);x0 < 3 < x1

3.1 Newton’s Divided Difference Interpolation Formula

Here we derive Newton’s general interpolation formula, which satisfy permanence property and
from which most of the other interpolation formulas can be deducted. Suppose the function y =

f(x) is known at the points x0, x1, . . . , xn and yi = f(xi), i = 0(1)n, where, the points xi,
i = 0(1)n need not be equispaced. Divided difference method introduced in this section are used
to successively generate the polynomials themselves.

Now, from the definition of divided difference of first order

f [x, x0] =
y − y0

x− x0
⇒ y = y0 + (x− x0)f [x, x0]

∴ y = f [x0] + (x− x0)f [x, x0]. (13)

Eq. (13) is called the linear Newton interpolating polynomial with divided differences. From
second order divided difference,

f [x, x0, x1] =
f [x, x0]− f [x0, x1]

x− x1
⇒ f [x, x0] = f [x0, x1] + (x− x1)f [x, x0, x1].

Therefore, from Eq. (13), we get

y = y0 + (x− x0)
{
f [x0, x1] + (x− x1)f [x, x0, x1]

}
or, y = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x, x0, x1]. (14)
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From third order divided difference,

f [x3, x2, x1, x0] =
f [x3, x2, x1]− f [x2, x1, x0]

x3 − x0

⇒ f [x, x0, x1] = f [x0, x1, x2] + (x− x2)f [x, x0, x1, x2].

Therefore, from Eq. (14), we get

y = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)
{
f [x0, x1, x2] + (x− x2)f [x, x0, x1, x2]

}
= f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+(x− x0)(x− x1)(x− x2)f [x, x0, x1, x2]. (15)

Continuing in this manner (by mathematical induction) the Newton divided difference formula for
the interpolating polynomial is

y = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] + · · ·
+(x− x0)(x− x1) · · · (x− xn−2)f [x0, x1, · · · , xn−1]

+(x− x0)(x− x1) · · · (x− xn−1)f [x, x0, x1, · · · , xn]

= f [x0] +

n∑
i=1

f [x0, x1, · · · , xi]
i−1∏
j=0

(x− xj) + f [x, x0, x1, · · · , xn]

n∏
i=0

(x− xi). (16)

Therefore the Newton’s divided difference formula for the interpolating polynomial is given by

φ(x) = f [x0] +
n∑
i=1

f [x0, x1, · · · , xi]
i−1∏
j=0

(x− xj). (17)

This formula is specially suitable for computation of an optimal degree interpolating polynomial.
By choosing the proper order and assuming that the spacing between points is uniform, most of
the classical interpolation formulas can be derived from Newton’s general formula.

Using the notations as in (??), the formula (17) can be written in the following form

f(x) = d0,0 + d1,1(x− x0) + d2,2(x− x0)(x− x1)

+ · · ·+ dn,n(x− x0)(x− x1) · · · (x− xn−1).

If f(x) is approximated by φ(x), then the truncation error E(x) is given by

E(x) = f(x)− φ(x) = f [x, x0, x1, · · · , xn]

n∏
i=0

(x− xi)

= f [x, x0, x1, · · · , xn]π(x). (18)

This form of the truncation error will be useful in considering the accuracy of numerical differen-
tiation and integration formulas.

THEOREM 8. Let f(x) ∈ Cn[a, b] and x0, x1, · · · , xn are (n + 1) distinct points in [a, b]. Then

there exists ξ ∈ (a, b) such that f [x0, x1, · · · , xn] =
1

n!
f (n)(ξ).
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Proof: Let E(x) = f(x)− φ(x). Now E(x) ∈ Cn[a, b] as f(x) and φ(x) is are so and

E(xi) = f(xi)− φ(xi) = 0; i = 0(1)n.

So the function E(x) has (n+ 1) distinct zeros in [a, b]. Generalised Rolle’s theorem implies that,
a number ξ ∈ (a, b) exists with E(n)(ξ) = f (n)(ξ)− φ(n)(ξ) = 0.

Since φ(x) is a polynomial of degree n whose leading coefficient is f [x0, x1, · · · , xn], so

φ(n)(x) = n!f [x0, x1, · · · , xn]

for all values of x. As a consequence

E(n)(ξ) = 0 = f (n)(ξ)− n!f [x0, x1, · · · , xn]

⇒ f [x0, · · · , xn] =
f (n)(ξ)

n!
;x0 < ξ < xn. (19)

This proves the theorem. 2

Using this theorem, the error formula (18) can be written as

E(x) =
π(x)

n!
f (n)(ξ); min{x, x0, · · · , xn} < ξ < max{x, x0, · · · , xn}.

Deduction 3.2. Newton’s divided difference formula can be expressed in a simplified form when
the nodes x0, x1, · · · , xn are arranged consecutively with equal spacing. In this case, we introduce
the notation h = xi+1 − xi; i = 0(1)n − 1 and x = x0 + uh. Then the difference x − xi is
x− xi = (u− i)h. So Eq. (17) becomes

φ(x) = φ(x0 + uh) = f [x0] + uhf [x0, x1] + u(u− 1)h2f [x0, x1, x2]

+ · · ·+ u(u− 1) · · · (u− n+ 1)hnf [x0, x1, · · · , xn]

= f [x0] +

n∑
k=1

u(u− 1) · · · (u− k + 1)hkf [x0, x1, · · · , xk] (20)

The Newton’s forward-difference formula, is constructed by making use of the forward difference
notation ∆. With this notation

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=
y1 − y0

h
=

1

h
∆y0

f [x0, x1, x2] =
f [x0, x1]− f [x1, x2]

x0 − x2
=

1
h∆y0 − 1

h∆y1

−2h
=

1

2!h2
∆2y0

and in general, f [x0, x1, · · · , xn] =
1

n!hn
∆ny0. Substituting the values in Eq. (20), we get,

φ(x) = f [x0] +

n∑
k=1

u(u− 1) · · · (u− k + 1)hk
1

k!hk
∆ky0 = y0 +

n∑
k=1

(
u

k

)
∆ky0

which is Newton’s forward interpolation formula.
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Deduction 3.3. Here also xi = x0 + ih, (h > 0); i = 0(1)n. If the interpolating nodes are
recorded from last to first as xn, xn−1, · · · , x0, we can write the interpolatory formula as

φ(x) = f [xn] + (x− xn)f [xn, xn−1] + (x− xn)(x− xn−1)f [xn, xn−1, xn−2]

+ · · ·+ (x− xn)(x− xn−1) · · · (x− x1)f [xn, xn−1, · · · , x0]

If in addition, the nodes are equally spaced with x = xn + vh and x = xi + (v + n− i)h, then

φ(x) = φ(xn + vh) = f [xn] + vhf [xn, xn−1] + v(v + 1)h2f [xn, xn−1, xn−2]

+ · · ·+ v(v + 1) · · · (v + n− 1)hnf [xn, xn−1, · · · , x0]

= f [xn] +
n∑
k=1

v(v + 1) · · · (v + k − 1)hkf [xn, xn−1, · · · , x0] (21)

The Newton’s backward-difference formula, is constructed by making use of the backward differ-
ence notation∇. With this notation

f [xn, xn−1] =
f(xn)− f(xn−1)

xn − xn−1
=
yn − yn−1

h
=

1

h
∇yn

f [xn, xn−1, xn−2] =
f [xn, xn−1]− f [xn−1, xn−2]

xn − xn−2
=

1
h∇yn −

1
h∇yn−1

2h
=

1

2!h2
∇2yn

and in general, f [xn, xn−1, · · · , x0] =
1

n!hn
∇nyn. Substituting the values in Eq. (21), we get,

φ(x) = f [xn] + v∇yn +
v(v + 1)

2
∇2yn + · · ·+ v(v + 1) · · · (v + n− 1)

n!
∇nyn

= yn +
n∑
k=1

(−1)k
(
−v
k

)
∆kyn; yn = f [xn]

which is the Newton’s backward interpolation formula.

Deduction 3.4. Let the nodes be xi = x0 + ih, h > 0; i = 0,±1,±2, · · · ,±m. The divided
difference formula with the sequence of arguments is

f(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x−1]

+(x− x0)(x− x1)(x− x1)f [x0, x1, x−1, x2] + · · ·
+(x− x0)(x− x1) · · · (x− xm)f [x0, x1, x−1, · · · , x−m]

= f [x0] +

m−1∑
k=0

(x− x0)(x− x1)...(x− x−k)f [x0, x1, x−1, · · · , xk+1]

+

m∑
k=1

(x− x0)(x− x1) · · · (x− xk)f [x0, x1, x−1, · · · , x−k] +Rn+1

= y0 +

m−1∑
k=0

(x− x0)(x− x1) · · · (x− x−k)
∆2k+1y−k

(2k + 1)!h2k+1

+
m∑
k=1

(x− x0)(x− x1) · · · (x− xk)
∆2ky−k
(2k)!h2k

+Rn+1
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where the remainder term is

Rn+1(x) = (x− x0)(x− x1) · · · (x− x−m)f [x0, x1, x−1, · · · , x−m]

= (x− x0)(x− x1) · · · (x− x−m)
f2m+1(ξ)

(2m+ 1)!
;

a = min{x, x−m} < ξ < b = max{x, x−m}, which is the Gauss’s forwarded formula with an
odd number of nodes. The other cases being similar.

EXAMPLE 15. Using Newton’s divided difference interpolation formula, find y(3.4), given

x : 2.5 2.8 3.0 3.1 3.6

y : 12.182494 16.444647 20.085537 22.197951 36.598234

Solution: Let us first construct following divided difference table:

x y f(, ) f(, , ) f(, , , )

2.5 12.182494

14.207177

2.8 16.444647 7.994546

18.204450 2.896256

3.0 20.085537 9.732300 0.846293

21.124140 3.827178

3.1 22.197951 12.794043

28.800566

3.6 36.598234

.

Using Newton’s divided difference formula (17), we get,

y(3.4) = 12.182494 + (3.4− 2.5)× 14.207177 + (3.4− 2.5)(3.4− 2.8)× 7.994546

+(3.4− 2.5)(3.4− 2.8)(3.4− 3.0)× 2.896256

+(3.4− 2.5)(3.4− 2.8)(3.4− 3.0)(3.4− 3.1)× 0.846293 = 29.966439.

Deduction 3.5. Divided difference formula is similar to Taylor’s’s series. Here, we consider the
relation

fn[x0] =
dn

dxn
f [x0] = n!f [x0, . . . , x0].

as in Eq. (??). In Eq. (19), if we take the limit xi → x0(i = 1, 2, · · · , n) then

f [x, x0, x0, · · · , x0] =
f (n+1)(ξ)

(n+ 1)!
; a < ξ < b.

Hence the formula (17) reduces to

f(x) = f(x0) +
x− x0

1!
f ′(x0) + · · ·+ (x− x0)n+1

(n+ 1)!
f (n+1)(ξ); a < ξ < b

which is the Taylor’s’s series with the truncation error term in Lagrange form.
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Deduction 3.6. Lagrange interpolation formula can be derived from divided difference. Let φ(x)

denotes a polynomial of the nth degree which takes the values y0, · · · , yn when x has the values
x0, · · · , xn respectively. Then the (n+1)th differences of the polynomial is 0 i.e.,f [x, x0, · · · , xn] =

0

or,
y

(x− x0) · · · (x− xn)
+

yn
(xn − x)(xn − x0) · · · (xn − xn−1)

+ · · ·+ y0

(x0 − x)(x0 − x1) · · · (x0 − xn)
= 0

or, y =
(x− x1) · · · (x− xn)

(x0 − x1) · · · (x0 − xn)
y0 + · · ·+ (x− x1) · · · (x− xn−1)

(xn − x0) · · · (xn − xn−1)
yn

which is the Lagrange interpolation formula. Note that, since the interpolating polynomial is
unique, Lagrange and Newton’s divided difference polynomials are two different forms of the
same polynomial.

EXAMPLE 16. For the following table, find the interpolation polynomial using

x : 0 2 4 8

f(x) : 3 8 11 18

(i) Lagrange’s formula and (ii) Newton’s divided difference formula, and hence show that both
represent same interpolating polynomial.

Solution: (i) The Lagrange’s interpolation polynomial is

φ(x) =
(x− 2)(x− 4)(x− 8)

(0− 2)(0− 4)(0− 8)
× 3 +

(x− 0)(x− 4)(x− 8)

(2− 0)(2− 4)(2− 8)
× 8

+
(x− 0)(x− 2)(x− 8)

(4− 0)(4− 2)(4− 8)
× 11 +

(x− 0)(x− 2)(x− 4)

(8− 0)(8− 2)(8− 4)
× 19

=
1

24
x3 − 1

2
x2 +

10

3
x+ 3.

(ii) The divided difference table is

x f(x) 1st divided 2nd divided 3rd divided
difference difference difference

0 3

2 8 5/2

4 11 3/2 −1/4

8 19 2 1/12 1/24

Newton’s divided difference polynomial is

φ(x) = 3 + (x− 0)× 5

2
+ (x− 0)(x− 2)× (−1

4
) + (x− 0)(x− 2)(x− 4)× 1

24

= 3 +
5

2
x− 1

4
(x2 − 2x) +

1

24
(x3 − 6x2 + 8x)

=
1

24
x3 − 1

2
x2 +

10

3
x+ 3.

Thus, the interpolating polynomial by both Lagrange’s and Newton’s divided difference formulae
are one and same.
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27 Interpolation

Listing 4: Program for Newton Divided Difference Formula

1 % Program f o r Newton ’ s Div ided D i f f e r e n c e I n t e r p o l a t i o n Formula
2 n= i n p u t ( ’ E n t e r t h e number o f s u b i n t e r v a l s n ’ ) ;
3 x= i n p u t ( ’ E n t e r t h e v a l u e s o f x ’ ) ;
4 y= i n p u t ( ’ E n t e r t h e v a l u e s o f y ’ ) ;
5 xp= i n p u t ( ’ E n t e r t h e i n t e r p o l a t i n g p o i n t xp ’ ) ;
6 f o r i =1 : n+1
7 f p r i n t f ( ’\n %d %d ’ , x ( i ) , y ( i ) ) ;
8 end
9 f o r k =1: n+1

10 d ( k , 1 ) =y ( k ) ;
11 end
12 f o r i =2 : n+1
13 f o r k= i : n+1
14 d ( k , i ) =( d ( k , i −1)−d ( k−1, i −1) ) / ( x ( k )−x ( k+1− i ) ) ;
15 end
16 end
17 sum=d ( n +1 , n +1) ;
18 f o r k=n :−1:1
19 sum=sum *( xp−x ( k ) ) +d ( k , k ) ;
20 end
21 f p r i n t f ( ’\n t h e v a l u e o f y a t x=% 1 4 . 5 f i s % 13 .11 f \n ’ , xp , sum

) ;
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