
Complex Integration

1 Integrals of a Function

The derivative of a complex-valued complex function w(t) = u(t) + iv(t), where t ∈ R is

w′(t) =
d

dt
w(t) = u′(t) + i v′(t).

Thus, for every complex constant z0 = x0 + iy0,

d

dt

[
z0 w(t)

]
=

d

dt

[
(x0 + iy0)(u+ iv)

]
= (x0u

′ − y0v
′) + i(y0u

′ + x0v
′)

= (x0 + iy0)(u′ + iv′) = z0 w
′(t).

1.1 Definite Integrals of Functions

Let w(t) = u(t) + iv(t) be a complex-valued function of a real variable t, defined on [a, b], where u(t)

and v(t) are real-valued functions of real variable t. Then , the definite integral of complex valued
function w(t) over the real interval [a, b] is defined as∫ b

a
w(t) dt =

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt, (1)

provided the functions u(t) and v(t) are integrable in [a, b]. The integrals of u(t) and v(t) in Eq. (1)
exist, if these functions are piecewise continuous over [a, b].

2 Contours

2.1 Path / Arc

(i) A path or arc is the set of all image points of a closed finite interval under a continuous mapping.
Thus path in a plane C from A to B is a continuous function t→ γ(t) on some parameter interval
a ≤ t ≤ b such that γ(a) = A and γ(b) = B.

(ii) The path is simple , if γ(s) 6= γ(t), when s 6= t. The path is closed, if it starts and ends at the
same point, i.e., γ(a) = γ(b). The simple closed path is a closed path γ such that γ(s) 6= γ(t),
when a ≤ s < t < b. The trace of the path γ is its image Γ = γ([a, b]) of γ, which is a subset of
the plane. For example, the parameterization of a unit circle is γ(t) = cos t+ i sin t or γ(t) = eit,
0 ≤ t ≤ 2π, which represents a closed path.
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2 Complex Integration

(iii) A smooth path is a path that can be represented in the form γ(t) = x(t) + i y(t); a ≤ t ≤ b,
where the functions x(t) and y(t) are smooth (i.e., they have many derivatives). In other words, a
differentiable arc is called smooth arc if γ′(t) 6= 0 for all t ∈ (a, b). The point γ(a) = x(a)+iy(a)

or A = (x(a), y(a)) is called the initial point of C and γ(b) = x(b) + iy(b) or B(x(b), y(b)) is its
terminal point.

If an arc C is given by γ(t) : t ∈ [a, b], then the opposite curve −C is defined by φ(t) = γ(a+ b− t) :

t ∈ [a, b].

2.2 Contour/ Piecewise Smooth Arc

A contour, or a piecewise smooth arc or a sectionally smooth arc is finite number of smooth arcs joined
end to end. A curve Γ with a parametric equation γ(t), t ∈ [a, b] is called piecewise smooth curve if γ(t)

is differentiable and γ′(t) is continuous for all but finite number of points {tj : 1 ≤ j ≤ n}. Furthermore,
γ(t) has both left limit and right limit at each tj ; 1 ≤ j ≤ n.

A contour is defined to be closed if γ(a) = γ(b) only. A contour is called a simple closed contour or
Jordan arc if and only if there is no self-intersection except that the initial point equals the final point.
For example

(i) the boundaries of triangles, rectangles and squares is a contour.

(ii) z = eit, 0 ≤ t ≤ 2π is a closed contour.

Suppose f(z) is continuous on Γ (we mean now Γ regarded as a set of points Γ1 ∪ Γ2 ∪ · · · ∪ Γn in
the plane, namely the union of the sets Γj and these are in turn the ranges of the parametric curves Γj ).
Then we define the integral of f along the chain Γ as∫

Γ
f(z) dz =

n∑
j=1

∫
Γj

f(z) dz.

Let D be a region and Γ be piecewise smooth curve in D. If f is a continuous function on D, then define
the line integral ∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t) dt, (2)

where z = γ(t); t ∈ [a, b] is a parametric equation of Γ.

2.3 Rectifiable Arcs

Let an arc Γ be defined by γ(t) = x(t) + iy(t), t ∈ [a, b]. Consider a partition P = {t0, t1, · · · , tn}
of [a, b]. Corresponding to this partition P , Γ is divided into n subarcs (Fig. 1) Γk = arc zk−1zk;

k = 1, 2, · · · , n, where zk = γ(tk); k = 0, 1, 2, · · · , n. We join each of the points z0, z1, · · · , zn to the
next point by straight lines. In this way, we obtain a polygonal curve. The length of this polygonal curve

is evidently
n∑
k=1

|zk − zk−1|. The length of the arc is defined by a nonnegative real number

L = sup
P

n∑
k=1

|zk − zk−1| = sup
P

n∑
k=1

|γ(tk)− γ(tk−1)|. (3)
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3 Complex Integration
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Figure 1: Rectifiable arcs.

A curve of finite length i.e., L <∞, is called a rectifiable curve.
Let a contour C be parametrised by z = γ(t), a ≤ t ≤ b, with γ′(t) exists and is a continuous function

for all t satisfying a ≤ t ≤ b. Then, the length L of contour C is given by

L =

∫ b

a
|γ′(t)|dt =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 dt. (4)

It is evident that a contour is rectifiable; its length is the sum of lengths of smooth arcs comprising the
contour.

Definition 1. A region determined by a closed curve C is defined by a component of the complement of
C in the extended complex plane. This definition can be understood by the Fig. 2. For a given closed

�

R1

R2

C1
-

S3

S1

S2

S4

C2

Figure 2: Region determined by a closed curve.

curve, among the regions determined by C, these must be only one unbounded region determined by C.
That region is treated as the region containing∞ in C∞. In Fig. 2, R2 and S4 are the unbounded regions
determined by C1 and C2 respectively.

Definition 2. (Connected region ): A region is said to be connected if any two points of the region can
be joined by an arc, then the arc lies wholly within the region, that is, every point of the arc belongs to
the region, otherwise it is disconnected.

(i) (Simply connected region) : A regionR in C is said to be a simply connected region , (Fig. 3), if

R

Figure 3: A simply connected region.

any closed curve lying entirely inR can be contracted continuously to a point without any portion
of the curve passing out of R in that process of contraction. For example, a circular region, a
cubical region, a spherical region are examples of simply connected region.

(ii) (Multiply connected region) : A regionR in C which is not simply connected, is called a multiply
connected region, Fig. 4. That is, the complement of R in C∞ has more than two components or
equivalently; there exists a closed curve C in R, which encloses a point of complement of R. For
example, the regions bounded by two concentric circles, spheres are multiply connected regions.
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4 Complex Integration

Figure 4: A multiply connected region.

RESULT 1. Jordan curve theorem : The complement of a simple closed curve has exactly two regions.

3 Complex Line Integration

An integral of a function f of a complex variable z that is defined on a contour C is denoted by
∫
C
f(z) dz

and is called a complex integral. Let Γ be a rectifiable path. Let f(z) be a complex valued continuous
function of complex variable z, defined at all points on the smooth curve Γ that lies in some region of

q q
q q q q q

a
z1

z2

zr−1

zr zn−1

b
ξnξr

ξ2

ξ1

Figure 5: Complex line integrals

the complex plane. Let the partition of Γ by means of points z1, z2, · · · , zn−1, chosen arbitrarily and call
a = z0, b = zn (Fig. 5). Let the length of the subinterval be

∆zr = zr − zr−1; r = 1, 2, · · · , n.

On each arc joining zr−1 and zr (where r goes from 1 to n), choose a point ξr. Consider the sum

Sn = (z1 − a)f(ξ1) + (z2 − z1)f(ξ2) + · · ·+ (b− zn−1)f(ξn)

=
n∑
r=1

(zr − zr−1)f(ξr) =
n∑
r=1

f(ξr)∆zr ; ξr ∈ (zr−1, zr). (5)

Let the number of subdivisions n increase in such a way that the largest of chord lengths |∆zr| (i.e.,
norm) approaches zero. Then, if the sum Sn approaches to a definite limit, irrespective of the more of
partitions of Γ and the choice of ξr’s, then the limit is said to be complex integral of f(z) on Γ from
z0(= a) to zn(= b), written as∫ b

a
f(z)dz or

∫
Γ
f(z)dz = lim

n→∞

n∑
r=1

f(ξr)∆zr. (6)

Eq.(6) is called the complex line integral or contour integral or briefly line integral of f(z) along curve
Γ, or the definite integral of f(z) from a to b along curve Γ.

EXAMPLE 1. Let Γ be the circle with centre a and radius r, prove that∫
Γ

dz

(z − a)n
=

{
0, if n 6= 1

2πi, if n = 1
, n ∈ Z.
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5 Complex Integration

Solution: The parametric equation of the circle Γ is given by z − a = reit, 0 ≤ t ≤ 2π, then∫
Γ

dz

(z − a)n
=

∫ 2π

0

i r eit

(reit)n
dt =

i

rn−1

∫ 2π

0
ei(1−n)t dt

=
i

rn−1

[ ei(1−n)t

i(1− n)

]2π

0
; provided n 6= 1

=
1

(1− n)rn−1

[
ei(1−n)2π − 1

]
=

1

(1− n)rn−1

[
1− 1

]
= 0, if n 6= 1.

In particular, if n = 1, then∫
Γ

dz

z − a
=

∫ 2π

0

i r eit

reit
dt = i

∫ 2π

0
dt = 2πi.

Hence the result.

EXAMPLE 2. Let Γ be the semi circular path z = 3eiθ (0 ≤ θ ≤ π) and the branch of the function z1/2

be f(z) = z1/2 = elog z/2 (|z| > 0, 0 < arg z < 2π). Then evaluate the integral I =

∫
Γ
z1/2 dz.

Solution: Given, Γ is the semi circular path z = 3eiθ (0 ≤ θ ≤ π) from the point z = 3 to the point
z = −3 (Fig. 6). Although the branch f(z) = z1/2 = elog z/2 (|z| > 0, 0 < arg z < 2π) of the

6

I
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-

Figure 6: Branch cut and contour integrals

multi-valued function z1/2 is not defined at the initial point z = 3 on Γ, the integral I nevertheless exists.
This is because when z(θ) = 3eiθ, 0 ≤ θ ≤ π, we have

f [z(θ)] = exp
[1

2
(ln 3 + iθ)

]
=
√

3 eiθ/2

which is piecewise continuous on [0, π]. Hence, the right had limits of the real and imaginary components
of the function

f [z(θ)]z′(θ) =
√

3 eiθ/2 3ieiθ = 3
√

3 ei3θ/2 = −3
√

3 sin
3θ

2
+ i3
√

3 cos
3θ

2

where 0 ≤ θ ≤ π exist at θ = 0 and these limits are 0 and 3
√

3, respectively. Thus f [z(θ)]z′(θ) is
continuous on [0, π] when its value is i3

√
3 at θ = 0.

∴ I = i3
√

3

∫ π

0
ei3θ/2 dθ = −2

√
3(1 + i).

EXAMPLE 3. Evaluate I =

∫
C
z̄2 dz+ z2 dz̄ along the curve C defined by z2 + 2zz̄+ z̄2 = (2− 2i)z+

(2 + 2i)z̄ from the point z = 1 to z = 2 + 2i.
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6 Complex Integration

Solution: Let z = x+ iy, the equation of the given curve can be written as

(z + z̄)2 = 2(z + z̄)− 2i(z − z̄)
⇒ (2x)2 = 2 · 2x− 2i · 2iy ⇒ y = x(x− 1),

The parametric equation of the curve is x = t, y = 2t2 − t, where 1 ≤ t ≤ 2. Therefore

I =

∫ 2+2i

z=1

[
(x− iy)2(dx+ idy) + (x− iy)2(dx− idy)

]
=

∫ 2+2i

z=1

[{
(x− iy)2 + (x+ iy)2

}
dx+ i

{
(x− iy)2 − (x+ iy)2

}
dy
]

= 2

∫ (2,2)

(1,0)

[
(x2 − y2)dx+ 2xy dy

]
= 2

∫ 2

1
(3t4 − 8t3 + 5t2)dt = 248/15.

3.1 Estimation of Contour Integrals

THEOREM 1. Let f(t) is a complex-valued function integrable over [a, b]. Then∣∣∣ ∫ b

a
f(t) dt

∣∣∣ ≤ ∫ b

a
|f(t)| dt. (7)

Proof: If a = b or
∫ b

a
f(t) dt = 0, then the above inequality holds. Let a < b and the value of the

integral is a non-zero complex number reiθ. Therefore∫ b

a
f(t) dt = r eiθ ⇒ r = e−iθ

∫ b

a
f(t) dt =

∫ b

a
e−iθ f(t) dt.

Also, r = |reiθ| =
∣∣∣ ∫ b

a
f(t) dt

∣∣∣. Since r is a positive real number, so the integral on the right hand side

is also a positive real number. We know that the real part of a real number is the number itself. Therefore

r = Re
∫ b

a
e−iθ f(t) dt =

∫ b

a
Re
[
e−iθ f(t)

]
dt

≤
∫ b

a

∣∣∣e−iθ f(t)
∣∣∣ dt, asRe z ≤ |z|

≤
∫ b

a

∣∣∣e−iθ∣∣∣ |f(t)| dt =

∫ b

a

∣∣∣f(t)
∣∣∣ dt

∴
∣∣∣ ∫ b

a
f(t) dt

∣∣∣ ≤ ∫ b

a

∣∣∣f(t)
∣∣∣ dt.

THEOREM 2 (The absolute value of a complex integral). If a function f(z) is piecewise continuous on a
contour Γ of finite length L, and if M ∈ R+ be the upper bound of |f(z)| on Γ, then∣∣∣ ∫

Γ
f(z) dz

∣∣∣ ≤M · L. (8)

This is the upper bound for moduli of contour integrals.
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7 Complex Integration

Proof. Let f(z) be continuous at all points of the rectifiable curve Γ having length L. Subdivide Γ into n
parts by means of points z1, z2, · · · , zn−1, chosen arbitrarily, and call a = z0, b = zn, where L = b− a.
On the arc joining zk−1 to zk (where k goes from 1 to n), choose a point ξk. Then by definition (6), we
have ∫

Γ
f(z)dz = lim

n→∞

n∑
k=1

f(ξk)∆zk.

Now, using the property of modulus, we have,∣∣∣ n∑
k=1

f(ξk)∆zk

∣∣∣ ≤ n∑
k=1

|f(ξk)| · |∆zk| ≤M
n∑
k=1

|∆zk| = ML, (9)

where we have used the facts that |f(z)| ≤M for all points z on Γ and that
n∑
k=1

|∆zk| represents the sum

of all the chord lengths joining points zk−1 and zk, where k = 1, 2, · · · , n and that this sum is not greater
than the length of Γ. Since all of the paths of integration to be considered here are contours and the
integrals are piecewise continuous functions defined on those contours, a number M will always exist.
Taking limits on both sides of (9), we get,

lim
n→∞

∣∣∣ n∑
k=1

f(ξk)∆zk

∣∣∣ ≤ML

or,
∣∣∣ ∫

Γ
f(z)dz

∣∣∣ ≤M L.

It is sometimes referred to as ML-inequality.

EXAMPLE 4. Find the upper bound for the absolute value of
∫
C

(z2 + 3)eiz Log z
z2 − 2

dz, where C =
{
z :

z = 2eiθ, 0 ≤ θ ≤ π/3
}
.

Solution: Let f(z) = {(z2 + 3)eiz Log z}/(z2 − 2). The contour (Fig. 7) is the part of the circular arc

-

6

O

y

x

θ = π/3

z = 2eiθ

(2, 0)

(1,
√

3)

θ = 0

Figure 7: Complex line integrals

C =
{
z : z = 2eiθ, 0 ≤ θ ≤ π/3

}
. Then

|f(z)| =
∣∣∣(z2 + 3)eiz Log z

z2 − 2

∣∣∣ ≤ (|z|2 + 3)e−y|eix|| ln r + i Arg z|
||z|2 − 2|

≤ (|z|2 + 3)e−y| ln r + i Arg z|
||z|2 − 2|

≤ (22 + 3) · 1 · ln(2 + π/3)

|22 − 2|
=

7(ln 2 + π/3)

2
, as e−y ≤ 1 for 0 ≤ y ≤

√
3

≤ 7

6
(3 ln 2 + π) = M.
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8 Complex Integration

Also, L =

∫ π/3

0
2 dθ = 2π/3. Hence by using Eq. (8), we get

∣∣∣ ∫
C
f(z)dz

∣∣∣ ≤M L =
7π

9
(3 ln 2 + π).

4 Cauchy’s Theorem

THEOREM 3. If f(z) is a single valued, analytic and regular in a simply connected region D, and f ′(z)

is continuous in D. Then, for every simple closed contour Γ in D,
∫

Γ
f(z)dz = 0.

Proof: Let f(z) = u(x, y) + iv(x, y) and z = x+ iy; x, y, u, v being real-valued. Then

f(z)dz = (u+ iv)(dx+ idy) = (u dx− v dy) + i(v dx+ u dy).

Also, let D = Int Γ, the interior of Γ. The integral of f over Γ can be written as∫
Γ
f(z) dz =

∫
Γ
(u dx− v dy) + i

∫
Γ
(v dx+ u dy). (10)

Since f is analytic in D ( and hence continuous in D ), u and v are also continuous therein and

f ′(z) = ux + ivx = vy − iuy

so that ux = vy and uy = −vx. Further, as f ′ is continuous in D, the partial derivatives of u and v are
also continuous in D. By applying Green’s theorem, to each of the integrals on the right hand side of Eq.
(10), we obtain ∫

Γ
f(z) dz =

∫
Γ
(u dx− v dy) + i

∫
Γ
(v dx+ u dy)

=

∫ ∫
D

(
− vx − uy

)
dx dy + i

∫ ∫
D

(
ux − vy

)
dx dy

= 0

which is the well-known Cauchy’s theorem.

4.1 Cauchy-Goursat Theorem

THEOREM 4. If f is analytic at all points within and on a simple closed contour Γ, then
∮

Γ
f(z) dz = 0.

Proof: Proof of the theorem for the case of a triangle: Consider any triangular contour ∆ in the z-plane
contained in D (Fig. 8). Since D is simply connected, the interior of4 also belong to D. To achieve the
desired result, join the midpoints D, E and F of the sides AB, AC and BC respectively to form four
triangles indicated briefly by 4I ,4II ,4III and 4IV . If f(z) is analytic inside and on triangle ABC,
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Figure 8: Triangular region

we have,∮
ABCA

f(z)dz =

∫
DAE

f(z)dz +

∫
EBF

f(z)dz +

∫
FCD

f(z)dz

=
[
{
∫

DAE

+

∫
ED

}+ {
∫

EBF

+

∫
FE

}+ {
∫

FCD

+

∫
DF

}+ {
∫
DE

+

∫
EF

+

∫
FD

}
]
f(z)dz

=

∫
DAED

f(z)dz +

∫
EBFE

f(z)dz +

∫
FCDF

f(z)dz +

∫
DEFD

f(z)dz

=

∮
4I

f(z)dz +

∮
4II

f(z)dz +

∮
4III

f(z)dz +

∮
4IV

f(z)dz

or
∣∣∣ ∮
4

f(z)dz
∣∣∣ ≤ ∣∣∣ ∮

4I

f(z)dz
∣∣∣+
∣∣∣ ∮
4II

f(z)dz
∣∣∣+
∣∣∣ ∮
4III

f(z)dz
∣∣∣+
∣∣∣ ∮
4IV

f(z)dz
∣∣∣. (11)

Let41 be the triangle corresponding to that term on the right hand side of Eq. (11) having largest value
(if there are two or more such terms then41 is any of the associated triangle). Then∣∣∣ ∮

4
f(z)dz

∣∣∣ ≤ 4
∣∣∣ ∮
41

f(z)dz
∣∣∣. (12)

By joining midpoints of the sides of triangle41, we obtain similarly a triangle42 such that∣∣∣ ∮
41

f(z)dz
∣∣∣ ≤ 4

∣∣∣ ∮
42

f(z)dz
∣∣∣

<
∣∣∣ ∮
4
f(z)dz

∣∣∣ ≤ 42
∣∣∣ ∮
42

f(z)dz
∣∣∣. by Eq. 12 (13)

Proceeding in this way, after n steps we obtain a triangle4n such that∣∣∣ ∮
4
f(z)dz

∣∣∣ ≤ 4n
∣∣∣ ∮
4n

f(z)dz
∣∣∣. (14)

Now, 4,41,42, · · · is a sequence of nested triangles each of which is contained in the preceding (i.e.,
a sequence of nested triangles) and there exists a point z0 which lies in every triangle of the sequence.
Since z0 lies inside or on the boundary of4, it follows that, f(z) is analytic at z0, then

f(z) = f(z0) + (z − z0)f ′(z0) + (z − z0)η (15)
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10 Complex Integration

where for any ε > 0, we can find δ such that |η| < ε, whenever |z − z0| < δ. Thus, by integration of
both sides of (15) and using Cauchy’s theorem 3, we obtain∮

4n

f(z)dz =

∮
4n

f(z0)dz +

∮
4n

(z − z0)f ′(z0)dz +

∮
4n

(z − z0)ηdz

= f(z0)

∮
4n

dz + f ′(z0)

∮
4n

(z − z0)dz +

∮
4n

(z − z0)ηdz

=

∮
4n

(z − z0)ηdz ; as
∮
4n

dz = 0 =

∮
4n

(z − z0)dz. (16)

Now, let P be the perimeter of4 , then the perimeter of4n is Pn = 1
2nP . If z is any point in4n, then

we must have, |z − z0| < P
2n < δ. Hence∣∣∣ ∮
4n

f(z)dz
∣∣∣ =

∣∣∣ ∮
4n

(z − z0)ηdz
∣∣∣ ≤ ε P

2n
· P

2n
=
εP 2

4n

<
∣∣∣ ∮
4
f(z)dz

∣∣∣ ≤ εP 2 ; from (14). (17)

Since ε can be made arbitrarily small, it follows that
∮
4
f(z)dz = 0.

4.2 Some Consequences of Cauchy Theorem

THEOREM 5. Let Γ1 be a simple contour and Γ2 be another simple closed contour lying entirely with Γ1.
If the single valued function f(z) in a simply connected domain D be analytic in the region R bounded
by the simple closed curves Γ and Γ1, then∮

Γ1

f(z)dz =

∮
Γ2

f(z)dz

where Γ1 and Γ2 are both traversed in the positive sense relative to their interior.

Proof: We join Γ1 and Γ2 by a straight line segment AB (Fig. 9). Obviously, the region R enclosed

r r:
9A R

B
Γ2

Γ1

Figure 9: Simply connected

by the contour Γ is simply connected and the single valued function f(z) is analytic in the regionR and

also on Γ so by Cauchy theorem,
∮

Γ
f(z)dz = 0, i.e.,∫

Γ1

f(z)dz −
∫

Γ2

f(z)dz +

∫
AB

f(z)dz +

∫
BA

f(z)dz = 0

or,
∫

Γ1

f(z)dz −
∫

Γ2

f(z)dz +

∫
AB

f(z)dz −
∫
AB

f(z)dz = 0

or,
∫

Γ1

f(z)dz −
∫

Γ2

f(z)dz = 0. (18)
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11 Complex Integration

EXAMPLE 5. Evaluate
∫

Γ

dz

z − a
, where Γ is a simple closed curve and z = a is inside Γ.

Solution: Here 1/(z − a) is analytic in a domain consisting of the complex plane excluding z = a. Let
z is inside the contour Γ and Γ1 be a circle of radius ε with centre at z = a. Now, on Γ1 : |z − a| = ε,

z = a+ εeiθ, 0 ≤ θ ≤ 2π. Then, by the consequence (18), it follows that∫
Γ

dz

z − a
=

∫
Γ1

dz

z − a
=

∫ 2π

0

εieiθ

εeiθ
dθ = 2πi,

which is the required value.

THEOREM 6. Let f(z) be analytic in a simply-connected region D and let z0 be a point in D. Then the

function, defined by F (z) =

∫ z

z0

f(z∗)dz∗ for each z in D and F ′(z) = f(z), for each z in D.

Proof: f(z) being analytic in D, is continuous in D, therefore, corresponding to arbitrary positive
number ε, ∃ a positive number δ(ε), such that

|f(z∗)− f(z)| < ε; whenever z∗ ∈ D ∩N(z, δ). (19)

We can choose as path the straight line segment joining z and z + ∆z provided we choose |∆z| is small
enough so that this path lies in D. So∣∣∣ ∫ z+∆z

z
[f(z∗)− f(z)]du

∣∣∣ < ε|∆z|; whenever |∆z| < δ.

Therefore, we have,

F (z + ∆z)− F (z)

∆z
− f(z) =

1

∆z

[ ∫ z+∆z

z0

f(z∗)du−
∫ z

z0

f(z∗)du
]
− f(z)

=
1

∆z

∫ z+∆z

z
[f(z∗)− f(z)]du.

Therefore, ∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣ =
1

|∆z|

∣∣∣ ∫ z+∆z

z
[f(z∗)− f(z)]du

∣∣∣
≤ 1

|∆z|

∫ z+∆z

z
|[f(z∗)− f(z)]||du|

≤ ε

|∆z|
|∆z| = ε for |∆z| < δ.

This, however, amounts to saying that

lim
∆z→0

F (z + ∆z)− F (z)

∆z
= f(z)

i.e., F (z) is analytic and F ′(z) = f(z).

THEOREM 7 (Morera’s theorem). Let f(z) be continuous in a simply connected region D and let∮
Γ
f(z)dz = 0, where Γ any rectifiable closed Jordan curve in D. Then f(z) is analytic in D.
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12 Complex Integration

5 Cauchy’s Integral Formula

THEOREM 8. Let f be analytic, regular within a simply connected region D and Γ is any simple closed
contour lying entirely within D. Then for any point z0 interior to Γ,

f(z0) =
1

2πi

∮
Γ

f(z)

z − z0
dz, (20)

where Γ is traversed in the positive (counter clockwise) sense.

Proof: Let D be a simply connected domain, Γ is a simple closed contour in D, and z0 an interior point
of Γ. About the point z = z0, let us describe a positively oriented small circle γ of radius r, defined by

q
z0

r
γ

D

Γ

Figure 10: Cauchy’s integral formula

the equation γ : z − z0 = reiθ where θ ∈ [0, 2π], lying entirely within Γ (Fig.10). Now, the function

φ(z) =
f(z)

z − z0
is analytic between and on the contours Γ and γ. Hence by the principle of deformation

of contours, we get ∮
Γ
φ(z) dz =

∮
γ
φ(z) dz. (21)

∴
∮

Γ
φ(z)dz =

∮
Γ

f(z)

z − z0
dz =

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθdθ

= i

∫ 2π

0
f(z0 + reiθ)dθ.

Taking the limit r → 0 of both sides, and making use of the continuity of f(z), we have,∮
Γ
φ(z)dz = lim

r→0
i

∫ 2π

0
f(z0 + reiθ)dθ

= i

∫ 2π

0
lim
r→0

f(z0 + reiθ)dθ = 2πif(z0)

or, f(z0) =
1

2πi

∮
Γ
φ(z) dz =

1

2πi

∮
Γ

f(z)

z − z0
dz.

This is known as Cauchy’s integral formula. It tells us that if a function f is to be analytic with in and on
a simple closed contour Γ, then the values of f interior to Γ are completely determined by the values of
f on Γ. The formula (20) gives the value of f(z) point each point z of D interior of an integral along Γ.

EXAMPLE 6. Using Cauchy’s integral formula, evaluate the integral

(i)
∫

Γ

e2z

(z − 1)(z − 2)
dz, where Γ is the circle |z| = 3.
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13 Complex Integration

(ii)
∫

Γ

cosh(πz)

z(z2 + 1)
dz, where Γ is the circle |z| = 2.

Solution: (i) The function f(z) = e2z is analytic within the circle Γ : |z| = 3 and the singular points
z0 = 1 and z0 = 2 lie inside Γ. Therefore,∫

Γ

e2z

(z − 1)(z − 2)
dz =

∫
Γ
e2z
[ 1

z − 2
− 1

z − 1

]
dz

= 2πi×
[ 1

2πi

∫
Γ

e2z

z − 2
dz − 1

2πi

∫
Γ

e2z

z − 1
dz
]

= 2πi[f(2)− f(1)], using Eq. 20

= 2πie4 − 2πie2 = 2πi(e4 − e2).

(ii) The function f(z) = cosh(πz) = cos(iπz) is analytic within the circle Γ : |z| = 2 and the singular
points z0 = 0, z0 = i and z0 = −i lie inside Γ. Therefore,∫

Γ

cosh(πz)

z(z2 + 1)
dz =

∫
Γ

[1

z
+
−1/2

z − i
+
−1/2

z + i

]
cosh(πz) dz

= 2πi×
[ 1

2πi

∫
Γ

cos(iπz)

z
− 1

2

1

2πi

∫
Γ

cos(iπz)

z − i
− 1

2

1

2πi

∫
Γ

cos(iπz)

z + i

]
= 2πi

[
f(0)− 1

2
f(i)− 1

2
f(−i)

]
, using Eq. 20

= 2πi
[

cos 0− 1

2
cos(i2π)− 1

2
cos2(−i2π)

]
= 2πi

[
1 +

1

2
+

1

2

]
= 4πi.

THEOREM 9 (Cauchy’s integral formula for derivatives :). Let f(z) be analytic within and on a closed
contour Γ of a simply connected domain D and z0 be any point in D, then f (n)(z) is also analytic and

f (n)(z0) =
n!

2πi

∮
Γ

f(z)

(z − z0)n+1
dz : n = 1, 2, 3, · · · (22)

where f (n)(z0) is the nth derivative of f(z) at z = z0.

EXAMPLE 7. Evaluate
∫

Γ

z3

(2z + i)3
dz where Γ is the unit circle.

Solution: Let f(z) = z3, then f ′(z) = 3z2 and f ′′(z) = 6z. Also, the point z = −i/2 lies inside Γ.
Hence using Eq. (22), we get∫

Γ

z3

(2z + i)3
dz =

1

8

∫
Γ

z3

(z + i/2)3
dz =

1

8

2πi

2!

2!

2πi

∫
γ

f(z)dz

(z + i/2)3

=
1

8

2πi

2!
f ′′(−i/2) =

2πi

16
(−3i) =

3π

8
.

EXAMPLE 8. Evaluate
∫

Γ

ez + z sinh z

(z − πi)2
dz where Γ is the circle |z| = 4.
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14 Complex Integration

Solution: Let f(z) = ez + z sinh z, so f ′(z) = ez + z cosh z+ sinh z. Also, the point z = πi lies inside
γ. Hence using Eq. (22), we get∫

Γ

ez + z sinh z

(z − πi)2
dz = 2πi× 1!

2πi

∫
Γ

f(z)

(z − πi)2
dz

= 2πif ′(πi) = 2πi
[
eπi + πi cosh(πi) + sinh(πi)

]
= 2πi(−1− πi) = −2πi(1 + πi).

THEOREM 10 (Cauchy’s estimate). Let f(z) be analytic function regular within a positively oriented
circle Γ = {z : |z − z0| = r}, then

|f (n)(z)| ≤ M · n!

rn
; n = 0, 1, 2, · · · (23)

where M is a constant such that |f(z)| ≤M on Γ, i.e., M is a maximum value of |f(z)| on Γ.

Proof: Since Γ is closed and bounded, it is compact. Hence there exist some M ∈ R+ such that
|f(z)| ≤M on Γ. By using Cauchy’s integral formula (22),

|f (n)(z0)| ≤ n!

2π

∮
|f(z)|

|z − z0|n+1
|dz|.

Now the equation of the circle can be written as z + z0 + reiθ : 0 ≤ θ < 2π, then

|f (n)(z0)| ≤ n!

2π

∮
Γ

|f(z)|
|z − z0|n+1

|dz|

≤ n!

2π

∫ 2π

0

M · r
rn+1

dθ =
M · n!

rn
.

This is the well known Cauchy inequality, that gives the maximum upper bound of |f (n)(z0)|.

THEOREM 11. [Liouville’s theorem on integral functions] A bounded entire function must be a constant.

Proof. By hypothesis, f(z) is bounded on C, so there exists M ∈ R+ such that |f(z)| ≤ M,∀z ∈ C.
Let z1 and z2 be any two points in the z-plane. Take the contour Γ to be a large circle with center at z1

and radius r such that z2 is interior to Γ. Then, by Cauchy’s integral formula (22),

f(z2)− f(z1) =
1

2πi

∮
Γ

f(z)dz

z − z2
− 1

2πi

∮
Γ

f(z)dz

z − z1

=
z1 − z2

2πi

∮
Γ

f(z)dz

(z − z1)(z − z2)
. (24)

Now, the equation of Γ may be written as |z − z1| = r, so we have,

|z − z2| = |z − z1 + z1 − z2| ≥ |z − z1| − |z1 − z2|
≥ r − |z1 − z2| ≥ r − r

2 = r
2
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15 Complex Integration

if we choose r so large that |z1 − z2| < r/2. Since |f(z)| < M , from (24) we get,

|f(z2)− f(z1)| =
|z1 − z2|

2π

∣∣∣∣∮
Γ

f(z)dz

(z − z1)(z − z2)

∣∣∣∣
≤ |z1 − z2|

2π

∮
Γ

|f(z)|
|z − z1| · |z − z2|

dz

≤ |z1 − z2|
2π

∮
Γ

M

r · r2
dz =

M |z2 − z1|
πr2

· 2πr

≤ 2|z2 − z1|M
r

→ 0 as r →∞.

⇒ f(z1)− f(z2) = 0, i.e., f(z1) = f(z2). (25)

Since, (25) holds for all values of z1 and z2, therefore f(z) is constant.

6 Modulus Theorem

THEOREM 12 (Maximum modulus theorem/principle). Let f(z) be non-constant analytic function in D
and continuous on D̄. Then the maximum value of |f(z)| occurs on Γ and never in the interior of Γ.

EXAMPLE 9. Find the maximum of |f(z)| in |z| ≤ 1 for the functions f(z) given by (a) z2 − 3z + 2 (b)
cos 3z .

Solution: (a) Let f(z) = z2 − 3z + 2. Being polynomial, it is analytic. To evaluate M = max
|z|≤1

|f(z)|,

let us take z = eiθ, then

|f(z)| =
∣∣∣e2iθ − 3eiθ + 2

∣∣∣ = |eiθ|
∣∣∣eiθ − 3 + 2e−iθ

∣∣∣
=

∣∣∣(cos θ + i sin θ)− 3 + 2(cos θ − i sin θ)
∣∣∣; as |eiθ| = 1

=

√
9(cos θ − 1)2 + sin2 θ =

√
2
√

4 cos2 θ − 9 cos θ + 5.

By maximum modulus theorem, the maximum value of |f(z)| is attained on the boundary Γ : |z| = 1.
Thus M = max

|z|≤1
|z2 − 3z + 2| =

√
2, and the maximum value is attained at θ = π/2, i.e., z = ±i on Γ.

(b) Let z = x+ iy, then

f(z) = cos 3z = cos 3(x+ iy) = cos 3x cos(3iy)− i sin 3x sin(3iy)

= cos 3x cosh 3y − i sin 3x sinh 3y

⇒ |f(z)|2 = cos2 3x cosh2 3y + sin2 3x sinh2 3y

= cos2 3x cosh2 3y + (1− cos2 3x) sinh2 3y

= cos2 3x+ sinh2 3y.

Therefore, |f(z)| =
√

cos2 3x+ sinh2 3y. By maximum modulus principle, the maximum of |f(z)| is
attained on the boundary Γ : |z| = 1. Now, | cos 3x| ≤ 1 and the maximum value of cos 3x is 1 occurs
at x = 0. Thus

g(y) =

√
1 + sinh2 3y; −1 ≤ y ≤ 1.
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Since sinh 3y is an increasing function of y, the maximum value of sinh2 3y occurs at y = ±1 and g(y)

has the maximum
√

1 + sinh2 3 at the points z = ±i. Thus

max
|z|≤1

|f(z) =

√
1 + sinh2 3y = cosh 3.

7 Taylor’s Series

THEOREM 13. [Taylor’s theorem] Let f(z) be analytic inside a circle Γ with center at z0, and radius r,
then for every point z within Γ,

f(z) = f(z0) + (z − z0)f ′(z0) +
(z − z0)2

2!
f ′′(z0) + · · ·+ (z − z0)n

n!
f (n)(z0) + · · ·

= f(z0) +
∞∑
n=1

(z − z0)n

n!
f (n)(z0) (26)

In particular, when, z0 = 0, equation (26) reduces to

f(z) = f(0) +
∞∑
n=1

zn

n!
f (n)(0) (27)

which is the well-known Maclaurin’s series.

EXAMPLE 10. Find the Taylor’s series to represent
z2 − 1

(z + 2)(z + 3)
in |z| < 2.

Solution: Using partial fraction method, we get

f(z) =
z2 − 1

(z + 2)(z + 3)
= 1 +

3

z + 2
− 8

8

z + 3

= 1 +
3

2

(
1 +

z

2

)−1
− 8

3

(
1 +

z

3

)−1

= 1 +
3

2

[
1− z

2
+
z2

22
− z3

23
+ · · ·

]
− 8

3

[
1− z

3
+
z2

32
− z3

33
+ · · ·

]
=

(
1 +

3

2
− 8

3

)
+
(
− 3

22
+

8

32

)
z +

( 3

2 · 22
− 8

3 · 32

)
z2 + · · ·

= −1

6
+
∞∑
n=1

(−1)n+1
( 8

3n+1
− 3

2n+1

)
zn,

and the expansion is valid in |z| < 2.

THEOREM 14 (Laurent’s theorem). Let a function f(z) be analytic in a ring shaped D bounded by two
concentric circles Γ1 and Γ2 with center z0 and radii r1 and r2 respectively (r1 > r2). Then for all z in
D,

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n (28)

where,

an =
1

2πi

∮
Γ1

f(w)

(w − z0)n+1
dw; n = 0, 1, 2, · · ·

bn =
1

2πi

∮
Γ2

(w − z0)n−1f(w)dw; n = 1, 2, 3, · · ·

 . (29)
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EXAMPLE 11. Find the Laurent’s series expansion of f(z) = z2e1/z about z = 0.

Solution: Here f(z) = z2e1/z is analytic at all points z 6= 0, but not analytic at the isolated singular
point z = 0 and hence can be expressed in the Maclaurin series. Now

f(z) = z2
[
1 +

1

z
+

1

2!z2
+

1

3!z3
+ · · ·

]
= z2 + z +

1

2
+

1

3!z
+

1

4!z2
+ · · · .

The analytic part of the series converges for |z| < ∞. The principal part is valid for |z| > 0. Thus the
series converges for z except at z = 0. This representation is the required Laurent’s series expansion
valid for 0 < |z| <∞.

EXAMPLE 12. Expand f(z) = 1/(z − 3) in a Laurent’s series valid for 0 < |z| < 3 and |z| > 3.

Solution: Here f(z) is analytic at every point in the open disc 0 < |z| < 3 and hence can be expressed
in a Maclaurin series. Thus

1

z − 3
= −1

3

1

1− (z/3)
= −1

3

[
1− z

3

]−1
;
|z|
3
< 1

= −1

3

[
1 +

z

3
+
(z

3

)2
+
(z

3

)3
+ · · ·

]
= −1

3
− 1

4
z − 1

27
z2 − 1

81
z3 − · · ·

Since there is no principal part so it is actually Maclaurin series. The domain |z| > 3 consists of all
points exterior to the circle |z| = 3. Rewriting f(z), we get

f(z) =
1

z − 3
=

1

z
· 1

1− (3/z)
=

1

z

[
1− 3

z

]−1

=
1

z

[
1 +

(
3

z

)
+

(
3

z

)2

+

(
3

z

)3

+ · · ·

]

=
1

z

[
1 +

3

z
+

9

z2
+

27

z3
+ · · ·

]
=

1

z
+

3

z2
+

9

z3
+ · · · .

EXAMPLE 13. Expand f(z) =
1

(z + 1)(z + 3)
in a Laurent’s series valid for the region (i) |z| < 1 (ii)

1 < |z| < 3 (iii) |z| > 3 (iv) 0 < |z + 1| < 2.

Solution: Resolving f(z) its partial fractions, we get,

f(z) =
1

(z + 1)(z + 3)
=

1

2(z + 1)
− 1

2(z + 3)
.

i) If |z| < 1, we have, | z3 | <
1
3 < 1. Therefore, the Laurent’s series expansion is valid for |z| < 1.
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Hence

f(z) =
1

2
(1 + z)−1 − 1

6

(
1 +

z

3

)−1

=
1

2
[1− z + z2 − z3 + · · · ]− 1

6

[
1− z

3
+

(
3

z

)2

−
(

3

z

)3

+ · · ·

]

=

(
1

2
− 1

6

)
−
(

1

2
− 1

18

)
z +

(
1

2
− 1

54

)
z2 −

(
1

2
− 1

162

)
z3 + · · ·

=
1

3
− 4

9
z +

13

27
z2 − 40

81
z3 + · · ·

Since there is no principal part, so, this is a Taylor’s series.

ii) When |z| > 1, we have, 1
|z| < 1, therefore,

1

2(z + 1)
=

1

2z
(
1 + 1

z

) =
1

2z

(
1 +

1

z

)−1

=
1

2z

[
1− 1

z
+

1

z2
− 1

z3
+ · · ·

]
=

1

2z
− 1

2z2
+

1

2z3
− 1

2z4
+ · · ·

For |z| < 3, we have,

1

2(z + 3)
=

1

6

(
1 +

z

3

)−1
=

1

6

[
1− z

3
+
(z

3

)2
−
(z

3

)3
+ · · ·

]
Then the required Laurent’s series expansion valid for both |z| > 1 and |z| < 3, i.e., 1 < |z| < 3

is given by

f(z) =
1

2(z + 1)
− 1

2(z + 3)
=

1

2z

(
1 +

1

z

)−1

− 1

6

(
1 +

z

3

)−1

=
1

2z
− 1

2z2
+

1

2z3
− · · · − 1

6

[
1− z

3
+
(z

3

)2
−
(z

3

)3
+ · · ·

]
= · · ·+ 1

2z3
− 1

2z2
+

1

2z
− 1

6
+

z

18
− z2

54
+

z3

162
− · · ·

which contains both analytic and principal parts.

iii) Let us consider |z| > 3, then 1
|z| <

1
3 < 1 and 3

|z| < 1. The required Laurent’s series expansion
becomes,

f(z) =
1

2(z + 1)
− 1

2(z + 3)
=

1

2z

(
1 +

1

z

)−1

− 1

2z

(
1 +

3

z

)−1

=
1

2z
− 1

2z2
+

1

2z3
− 1

2z4
+ · · · − 1

2z

[
1− 3

z
+

(
3

z

)2

−
(

3

z

)3

+ · · ·

]

=

(
3

2
− 1

2

)
1

z2
+

(
1

2
− 9

2

)
1

z3
+

(
−1

2
+

27

2

)
1

z4
+ · · ·

=
1

z2
− 4

z3
+

13

z4
− · · ·

which contain only the principal parts (b1 = 0) of Laurent’s series expansion of f(z).
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iv) Let z + 1 = u, then 0 < |z + 1| < 2 implies 0 < |u| < 2, u 6= 0. Therefore,
∣∣u

2

∣∣ < 1 and so,

f(z) = f(z) =
1

(z + 1)(z + 3)
=

1

u(u+ 2)
=

1

2u

(
1 +

u

2

)−1

=
1

2u

[
1− u

2
+
(

1 +
u

2

)2
−
(

1 +
u

2

)3
+ · · ·

]
=

1

2u
− 1

4
+
u

8
− u2

16
+ · · ·

=
1

2(z + 1)
− 1

4
+

1

8
(z + 1)− 1

16
(z + 1)2 + · · ·

which contain only one principal part of the Laurent’s series expansion of f(z) about z = −1.

8 Zeros of an Analytic Function

Let a function f be analytic in some disk |z − z0| < δ. If f(z0) = 0 and there exists r ∈ N such that
f ′(z0) = f ′′(z0) = · · · = f (r−1)(z0) = 0 and f (r)(z0) 6= 0, then the analytic function f is said to have
a zero of order r at z0. If r = 1, i.e., f(z0) = 0 and f ′(z0) 6= 0, then z0 is known as a simple zero of f .

THEOREM 15. Let f(z) be an analytic function at z0. Then f(z) has a zero of order r at z0 if and only
if there is a function g satisfying f(z) = (z − z0)rg(z), where g(z) is analytic at z0 and g(z0) 6= 0.

Proof: Necessary condition: Suppose f(z) is analytic at z0 and f has a zero of order r at z0. Then
for r ∈ N, f ′(z0) = f ′′(z0) = · · · = f (r−1)(z0) = 0 hold in some neighbourhood N (z0, δ). Applying
Taylor’s theorem

f(z) =
(z − z0)r

r!
f (r)(z0) +

(z − z0)r+1

(r + 1)!
f (r+1)(z0) + · · ·

= (z − z0)r
[f (r)(z0)

r!
+
f (r+1)(z0)

(r + 1)!
(z − z0) + · · ·

]
= (z − z0)rg(z), z ∈ N (z0, δ)

where, g(z) =
f (r)(z0)

r!
+
f (r+1)(z0)

(r + 1)!
(z − z0) + · · · , z ∈ N (z0, δ) being a polynomial is analytic in

N (z0, δ) and g(z0) =
f (r)(z0)

r!
6= 0.

Sufficient condition : Let f(z) = (z− z0)rg(z), where g(z) is analytic at z0 and g(z0) 6= 0. As g(z)

is analytic at z0, therefore it has a Taylor series representation given by

g(z) = g(z0) +
g′(z0)

1!
(z − z0) +

g′′(z0)

2!
(z − z0)2 + · · ·

in some neighbourhood N (z0, δ) of z0. Therefore,

f(z) = (z − z0)rg(z) = (z − z0)r
[
g(z0) +

g′(z0)

1!
(z − z0) +

g′′(z0)

2!
(z − z0)2 + · · ·

]
= g(z0)(z − z0)r +

g′(z0)

1!
(z − z0)r+1 +

g′′(z0)

2!
(z − z0)r+2 + · · · , (30)
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when z ∈ N (z0, δ). We see that
f (r)(z0)

r!
+
f (r+1)(z0)

(r + 1)!
(z− z0) + · · · is Taylor series representation for

f(z) and hence f ′(z0) = f ′′(z0) = · · · = f (r−1)(z0) = 0 and f (r)(z0) = r!g(z0) 6= 0. Hence, f has a
zero of order r at z0. For example

(i) Consider f(z) = sin z, we know that

sin z = z − z3

3!
+
z5

5!
− · · · = z

[
1− z2

3!
+
z4

5!
− · · ·

]
= z g(z),

where g(z) = 1− z2

3!
+
z4

5!
− · · · is analytic and g(0) = 1 6= 0. Therefore, z = 0 is a simple zero

of sin z. Similarly, for f(z) = z2 sin z, z sin z2, z = 0 is a zero of order 3.

(ii) Consider f(z) = (z − 2i)5(z + 3)2ez, then 2i,−3 are zeros of f of order 5 and 2, respectively.

THEOREM 16. Suppose f(z) is analytic in a region D and is not identically zero in D. Then the set of
all zeros of f(z) is isolated.

Proof: Let z0 ∈ D be a zero for f(z). We shall prove that there exists a neighbourhood N (z0, δ) such
that this neighbourhood does not contain any other zero for f(z). Let z0 be a zero of order r for f(z),
then

f(z) = (z − z0)r g(z),

where g(z) is analytic at z0, and g(z0) 6= 0. We claim that N (z0, δ) does not contain any other zero
of f(z). Suppose z1 6= z0 is another zero for f(z) in N (z0, δ). Then d(z1, z0) = |z1 − z0| < δ and
f(z1) = 0.

∴ (z1 − z0)rg(z1) = 0⇒ g(z1) = 0,

as z1 6= z0. Now, since g is analytic at z0, g is continuous at z0. Thus, we can find a δ > 0 such that

d(z1, z0) < δ ⇒ d(g(z1), g(z0)) <
|g(z0)|

2

⇒ |g(z0)| < |g(z0)|
2

,

which is a contradiction. Thus N (z0, δ) contains no other zero of f(z) and hence the set of all zeros of
f(z) is isolated.

8.1 Isolated Singular Points

If z0 is an isolated singular point of f(z), then there exists a deleted neighbourhood of z0 inside which
f(z) is analytic. Hence in this region, we can expand the function f(z) as a Laurent’s series. Isolated
singular points are further classified into three types:

(i) removable singular point (ii) pole (iii) essential singular point
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8.2 Removable Singularity

If the Laurent’s series expansion (28) of an analytic function has no principal part, i.e., all the coefficients
bn are zero, so that

f(z) =
∞∑
n=0

an(z − z0)n, 0 < |z − z0| < R, (31)

then the isolated singular point z0 is called removable singular point of f(z). In this case lim
z→z0

f(z)

exists finitely. For example,

(i) for the function f(z) = sin z
z ; z 6= 0 has a removable singularity at z = 0 because in the Laurent’s

series expansion

sin z

z
=

1

z

{
z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

}
= 1− z2

3!
+
z4

5!
− z6

7!
+ · · ·

there is no principle part (i.e., bn = 0 ; n = 1, 2, · · · ) so, at z = 0, f(z) has the removable
singularity. When f(0) = 1 is assigned, f becomes entire.

(ii) for the function f(z) = 1−cos z
z2

; z 6= 0 has a removable singularity at z = 0 because in the
Laurent’s series expansion

1− cos z

z2
=

1

z2

[
1−

{
1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

}]
=

1

2!
− z2

4!
+
z4

6!
− · · ·

there is no principle part (i.e., bn = 0 ; n = 1, 2, · · · ) so, at z = 0, f(z) has the removable
singularity. When f(0) = 1/2 is assigned, f becomes entire.

8.3 Poles

If f(z) has the Laurent series expansion of the form (28) in which the principal part has only a finite
number of nonzero terms given by

m∑
n=1

bn
(z − z0)n

=
b1

z − z0
+

b2
(z − z0)2

+ · · ·+ bm
(z − z0)m

(32)

where bm 6= 0, then the singularity z = z0 is called a pole of order m of the function f(z). In particular,
if m = 1, then the pole is said to be simple pole or pole of order 1; if m = 2, the pole is a double pole or
a pole of order 2. For other finite values of m, the corresponding pole is called a multiple pole of order
m. For example,

(i) f(z) = sin z/z2 has the Laurent series expansion about the singularity z = 0 is given by

sin z

z2
=

1

z
− z

3!
+
z3

5!
− · · · ,

for 0 < |z| <∞. From this series, we see that b1 6= 0 and so z = 0 is a simple pole of the function
f(z).
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(ii) f(z) = sinh z/z4 has the Laurent series expansion about the singularity z = 0 is given by

f(z) =
sinh z

z4
=

1

z3
+

1

3!z
+
z

5!
+
z3

7!
+ · · · , 0 < |z| <∞.

Therefore, z = 0 is a pole of f(z) of order 3.

(iii) f(z) = 1/(z − 1)2(z − 3) has the Laurent series expansion valid for 0 < |z − 1| < 2 is given by

f(z) = − 1

2(z − 1)2
− 1

4(z − 1)
− 1

8
− z − 1

16
− · · · .

Since b2 = −1/2 6= 0, we conclude that z = 1 is a pole of order 2.

8.4 Essential Singularity

If the principal part of the Laurent’s series expansion (28) of the function contains an infinite number of
terms, i.e., bm 6= 0 and are infinite in number, then the isolated singular point z0 is called an essential
singular point of f(z). In this case lim

z→z0
f(z) does not exist.

For example,

(i) the function sin 1
z−1 has essential singularity at z = 1 because

sin
1

z − 1
=

1

z − 1
− 1

3!

1

(z − 1)3
+

1

5!

1

(z − 1)5
− · · ·

has infinite number of the terms in negative powers of (z − 1).

(ii) f(z) = e3/z has the Laurent series expansion valid for 0 < |z| <∞ is given by

e3/z = 1 +
3

z
+

32

2!z2
+

33

3!z3
+ · · · .

It contains an infinite number of nonzero terms. This shows that z = 0 is an essential singularity
of f .

EXAMPLE 14. Determine and classify all the singularities of the functions:

a) f(z) =
1

(2 sin z − 1)2
b) f(z) =

cosπz

(z − z0)2
.

Solution: (a) The poles of f(z) are given by putting the denominator equal to zero, i.e., by

(2 sin z − 1)2 = 0⇒ sin z =
1

2
⇒ z = 2kπ +

π

6

= (2k + 1)π − π

6
; k ∈ Z.

Obviously, z = 2kπ + π
6 , (2k + 1)π − π

6 k ∈ Z are poles of order 2.
(b) Poles of f(z) are given by putting the denominator equal to zero, i.e., by

(secπz)(z − z0)2 = 0

⇒ πz = nπ and z = z0

⇒ z = n and z = z0 ; n ∈ Z

Since (z − z0) = 0 gives z = z0 repeated twice, so z = z0 is a double pole. Obviously, z = ∞ is the
limit point of these poles z = n : n ∈ Z, hence z =∞ is a non-isolated essential singularity.

Dr.Prasun Kumar Nayak & Dr.Himadri Shekhar Mondol Home Study Materiel



23 Complex Integration

References

[1] Theorore W. Gamelin, Complex Analysis, Springer

[2] Prasun Kumar Nayak and Mijanur Rahaman Seikh, A Text Book of Complex Analysis. Universities
Press, 2017.

Dr.Prasun Kumar Nayak & Dr.Himadri Shekhar Mondol Home Study Materiel


