11 e g v e
5, Wolfe’s Modified Simplex Method -
et the quadratic programming problem be
:#MaximiZEZ— chxj+ chjkx x,
- ] =1 k=l
subject to the constraints Zaux ;&0 and =1, 2, .15 = 1,2, s
J=1
‘ : ' >0 foralli=1,2,..,m
where ¢ =Ci foralljand k, b, 20 for y
|
| d then f(X) 1s concave.
| i ¢.x X, benegative semi-definitean i
Also, assume that the qua(—ir/agfilm ;; o R e
. i timal solution
0 diti . ven in section 4.1 become necessary apd sufficient for an OP‘ im ,
Therefore the conditions gl it -
quadratic programming problem e
f/ be outlined as below:
Then Wolfe’s iterative procedure may
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UXS2)= () Z«\Za x,~b,4 )”'i&,.,(-ﬂ *S2ut)

P

: qu““b thie firsy u&% {
- Differentiate L(x,s WA) partially with respect to the components of X, Sand £

nfﬁlsﬁ
mml derivatives to zero, derive Kuhn-Tucker conditions from the resulting 64

Sjﬁp 3: lntmilgoi: the  non-negative artificial vanable w,
=1.2

e b s s e

—— n‘m the Kuhn-Tucker conditions-

¢ +ch,x,‘-z‘,1au+z +W, =0,j=12...

i=]
and construct the objective function
ZoEW W+t w,
Step 4 : Obtain an initial B.L.S. to the LPP
Min z, = w, +w, +..+w,

n

or,Max z, =—w —w,—..—w

subjecttoz CauXy — Zla A tW, ==¢,j=12,..,n

k=l m

-

Zayxj+x b,i=12,...m

wf’in/{«nﬂj’xj 20’ i= la 2) ey m;j= 1’ 29 - n

and satisfying the complementary slackness condition

\/\'/\Z m+j J+Zﬂ1 Tngi = ’

i=]

n+i

whcre, %, =8i=1, 2,..m
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Step 5: Use IWo-phage

b]m .
This . Plex Method to obtain an optimal solution of the LPP of Step4.
solutioy isap

opti )
Important Femarkg e Solution o the given QPP also.
on W()"-e,s \
Method .
1. Letus desim- :
i te ag com ;
| ple : :
% In this methoq g, 1 entary variabe each pair of x, and 4, , and like wise each pair of S} and 4,.
£ € asi ¢ solyt;
u ;
L For €achjang onatany Iteration may correspond to one of the two cases:
€ach ¢ the hac: :
called a Standarq pyq; basis contains only one complementary variable. Such a basic solution is
ic solyt:
II. For €ach; anq h *oluionang satisfies the complementary slackness condition.
€ach i the byg;

. as : . . :

1scalled 5 fon-standarq 1 contains a basic pair of complementary variables. Such a basic solution
i Whenever g on-stang 1€ solution and may not satisfy the complementary slackness condition.
! X ard bas" ,

-~ - N 1€ occurs, the selection procedure for entering variable into the basis

2. Ifthequadratic program ;. "

‘; by suitable modification in f1 (X) and the , >' o

; 2" constraints,

‘ . Thesolution of th o *'

] e above system is obtained by using Phase-] of two phase simplex method. Since our aim i

isto obtain a feasible solution, the solution does oy require the consideration of Phase-IL The only necessary thing

isto maintain the conditi 8% == .
istom 1tons A4S =0= /1,,.+jxj fori= L, com andj=1,2, ..., nall the time. This implies that if
4 isin the basic solution with positive value, then S? can not present in the basis with positive value. Similarly,

4y, and x; can not be positive simultaneously,

4. Itshould be noted that Phase-1 will end in the usual manner with the sum of all artificial vaﬁables equals to
zmoonly if the feasible solution exists.
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 Another approach (0 solve a quadratic Programming problem has been suggested by Beale (1959). Thisis
L " .a chnigH® for solving QPP without using the Kuhn-Tucker conditions. It involves the partitioning the variables
,! 'iﬂw pasis and non-basic ones. At each iteration, the objective function is expressed in terms of the non-basic
van'ables only.

et the QPP be given in the form

. & |-
Min. / (X ) =CX+ ) X'0X, Subject to the constraints AX = b, X > 0. Without loss of generality,

oy QPP with linear constraints can be written in this form.

The Beale's iterative procedure for solving such type of QPP can be outlined in the following steps.

Step-L. Convert the maximization problem into that of minimization, if it is in maximization form. Introduce slack

pdlor surplus variables to convert the inequalities into strict equations,

slep-2. Start with any initial solution as the basic solution and let it be denoted by

Xp= (xa. s Xp yees Xp, )

In fact, we can choose arbitrarily any of the m variables as basic ones so that the remaining n—m variables

lecome non-basic. Let the non-basic variables be denoted by

Xyg =(xNB, s Xnp, 2+ s X ng, )
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" Ste

sy, » Mapp,

& " o S i %005 044 Yo - o Ty e
e X, intenmsof the non-basie vietablos a
. _ Xy eerir By
ic variables Fa o :
- basic Vit
ress the baste

Step-3. Exp - ’
i n and additimull con

using the give:

straints, il any-

itlonal constrains, i1F any
. » oiven and additional cen ’
[ X, only, using the EV€N )
o terms 0 Axy e inblessl X =0,
xopess /(X)) interm i .
y LY ‘s 3 s I ' i . ) ‘L
SR B, i R uff(X) with respect 1€
ia] derivalive 4
3 2 ate the partia
Step-5. Evalua

of ) k=1,2,, 0
Step-6. See the nature of OxXyp, Nap=0

nt solution is optimal.

he curre
=1,2,..,n—m,thent
0 If[ 5f} >0 forallk=1,

Xyg=0

Oy,

s not optimal. The non-basic Variah),

ntsolution i
@ If o ] <0 forat least one k, then the curre
oy Xpp=0

. — of will enter the basis. |
Comspondlng to the maximum o axNBA Xyp=0

i much x; canbe incre '
Step-T7. Let x; be the entering variable identified in the above step. Determine how ased by
calculating

(8)  thelargest value of x, that can be attained without deriving the present basic variable (say x,) Negatiye -

d
(b) that value of x; at which

vanishes,
NB,

P-8. Choose the minimum of the values obtained in (4) and (b) above. If it occurs for (a), x, Willleave the basy |

Ifit oceurs for (b), no basic variable can be removed from the basis. In this case, we enlarge X xg by ierducing .
anew unrestricted variahle u, calleda free: variable defined by ¥, = ]— Qf_ :

= i

This will replace the non-

basic variable ¥; that has become a new basic variable. The equation 4 - 1y

is to be treated as as additiona] constraint. : :

18
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i e B T e T L

_ contmins 8 free vansbie

reached. If X son

jan®

- o 4 -1 : » >y Y . P & P ,
qop O (o step-3 and repeat the procedure until an optimal solution 15

,opmmduy eriteria includes an extra condition ( af J = O¥1.
o, XogoOu, 9
Je's method ina finite nu

no free variable.

1 dlL'
" the
mber of

ergence of Bea

the linear term contains
asic free variable u for .

. -/3 1 ol i ihils
Con\"?fgcnce : We give here a feasibility argument for the conv’
ay tl_mt the objective function is in standard form if

e We shall 53
at any stage, there isanon-b

For convergence we need the following procedure : If,
E »
1. Now, when/isin standard form its

o .
_ 0, then a free variable must be removed from the non-basic ¢

e

“.hich Y
all the present pon-basic

trial solution i

tion is a necessary value of f subject to the restriction that
h value for any set ofnon-bas
bles, so in order to show that

reach a standard

alue in the present
ic restricted

val
4 variables take the value zero, so there can be only one suc

. restriC[e
e are only a finite number of possible sets of non-basic restricted varia

cariables: The
must terminate, it suffices to show that they invariably

g ierations, ifnot initially in standard form,

formina finite number of steps.

We

removed from the non-
ssion for /; the off-diagonal elements in the row associ

in this variable, and furtermore fcan never contain a linear term

n standard form a free variable will be

prove this as follows: our procedure ensures that when /is not i
ow that, in the new

basic set. Let p be the number of non-basic free variables. It is easy to sh
ated with the new non-basic variable must vanish.

gxpre
It follows that fdoes not contain a linear term
s unless some other restricted variable becomes non-basic, thereby decreasing p

inthe variable
and must decrease after at most

Therefore, if /1s not in standard form, and p = p,, thenp can not increase

p, steps, unless p meanwhile achieves a standard form. Since fis always in standard form when p=0, th Lo
, the require

result follows.
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: . ale’s method.
Example 6.1.2. Solve the following quadratic programming problem by Be
Maximize Z = 2x, +3x, - x’
subject to X +2x, <4,

a‘nd x]9x2 2 O

22
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5 So“lttﬁﬂn.m first, T L i et

K
Vg
Xy) s o "Mization problem ino the fol

3, 2

krsing mindminasion i‘”"i“%cm % A

Now we arbitrarjly choose

basic var;
| anable, g
XB =(xl.) a'nd XNB Othm

:(xz,xs)

The basic variable % Can be ©Xpressed i 4
€Ims of the

non-basj :
X, =4-2x - O e L

f(xzaxa) = "2(4"2352 ~Xy)

—3x2+(4._2x2_x3)2
A
2 =4 - 3+2(4 2x2-x)(_2)
=8x, +4x,~15
I _
and gj—+2—2(4—2x2—x3)
=4x, +2x, -6
I
2 Xy=0,x,=0
o
ad | 7| = -
O, :
x:=0,.¥3=0

oldlirieu py cdlinscariier
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' ralues of the above two partial
' A olute values o
-, thecurrent solution is not optimal. The maximum among the abs ) |

So, X will enter the basis.
g

derivatives is 15 and it is corresponding to the non-basic variable X; _ |
' ' following two quantities:

. alculate the :

In order to determine how much x, should or may be increased. We ¢

< variable negative,
- resent basic
riving the p

a)  thelargestvalue of x, that can be attained without de
.ls chOScﬂ greatel' thml 2

jveif x
Since x; =4-2x, —x, and x, = 0,x, will become negative 1t %2

b)  thevalueof x, for which g\L vanishes.
v : '

ained in case (b). So, X, can not be removeq fron,

o . 15 . .
The minimum of these two values of x, is = whichisob

the basis. In this case, we enlarge X, by introducing the free variable
1of IS
Uy = ———=——+4x, + 2x
P2, 2745

X —-l- u, —2x +E
or, 2“4 2 X4 5

i - . r 5 " g . .
Now we start the next iteration with X, = (x,,-\z) and X (”2"‘3)

Expressing x, in terms of u, and x,, we have

o= 4--]-(u2 —2x; +-1-§-)—x,
2 2

24
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1,3 97
=—ul 4y -0
TRAEINT
“ou, 2
a3
and G, 2

g—- = L >0
and l ar3 vy =0,5,=0 2 ’

Hence the optimality condition is reached and the optimal solutiop is x, = i .

Co(1),4(18 _(1J’=gz
:inna :”‘fmu B +"(-4_ Tl 8 4 16
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