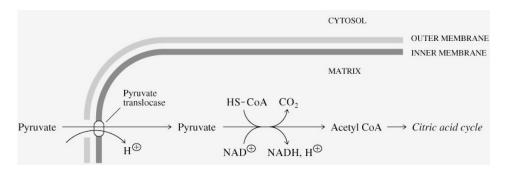
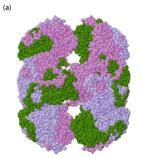
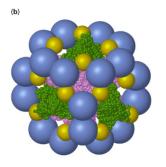

PYRUVATE DEHYDROGENASE COMPLEX


- The pyruvate dehydrogenase complex and the citric acid cycle enzymes exist in the matrix of the **mitochondrion** in eukaryotes
- Pyruvate in generated by glycolysis in the cytosol and needs to be moved into the mitochondria

MITOCHONDRIAL STRUCTURE

- Mitochondria have a TWO membrane system
 - Outer Membrane: Permeable to small molecules
 - Inner Membrane: NOT permeable Has specific integral membrane protein transporters
 - Region between the two membranes = intermembrane space
 - Inner membrane is highly folded and forms boundary to fluid filled interior = MATRIX
 - Matrix has a "gel-like" consistency
 - Contains the proteins of the TCA cycle
 - Other proteins responsible for further aerobic metabolism are either in the matrix or are bound to the inner membrane


Pyruvate generated in Cytosol enters the Mitochondrion (Aerobic fate of Pyruvate)



- Diffuses through the outer membrane
- Pyruvate translocase transports pyruvate into the mitochondria in symport with H+
 - Integral membrane protein in inner membrane

CONVERSION OF PYRUVATE TO ACETYL COA

The pyruvate dehydrogenase complex LINKS GLYCOLYSIS TO THE TCA CYCLE! - also occurs in mitochondria

Structure of the pyruvate dehydrogenase (PDH) complex

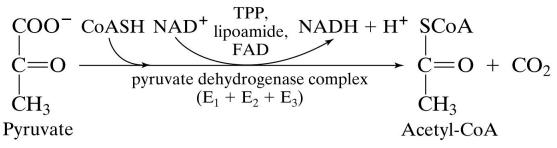
Pyruvate dehydrogenase complex (PDH complex) is a multienzyme complex containing:

3 enzymes + 5 coenzymes + other proteins

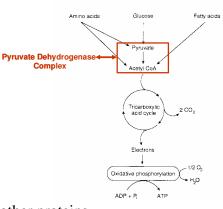
(+ ATP coenzyme as a regulator)

- E1 = pyruvate dehydrogenase
- E2 = dihydrolipoamide acetyltransferase
- E3 = dihydrolipoamide dehydrogenase

Table 16.1

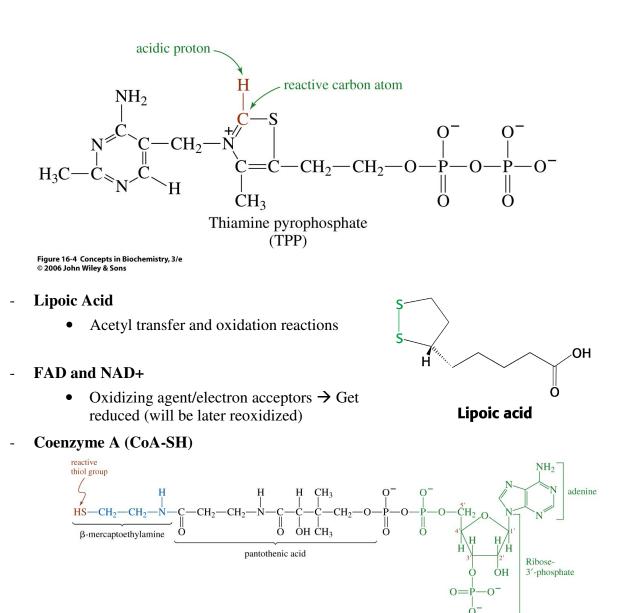

Enzymes and coenzymes of the pyruvate dehydrogenase complex

Enzyme	Abbreviation	Coenzyme
Pyruvate dehydrogenase	E_1	Thiamine pyrophosphate (TPP)
Dihydrolipoyl transacetylase	E_2	Lipoamide, coenzyme A (CoASH)
Dihydrolipoyl dehydrogenase	E ₃	Flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD ⁺)


Table 16-1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Overall reaction of pyruvate dehydrogenase complex

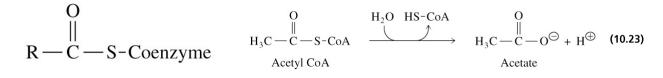
- Multienzyme Complex (36 subunits!)
- pyruvate + CoASH + NAD+ \rightarrow acetyl-CoA + CO2 + NADH + H+



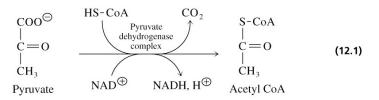
Unnumbered figure pg 487 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Roles of the coenzymes of the PDH complex

- **TPP** (thymine pyrophosphate)
 - Active form of **thiamine**
 - Vitamin B1
 - o Beans, green vegetables, sweet corn, egg yolk, liver, corn meal, brown rice
 - **Deficiency = beriberi**
 - TPP often used for decarboxylation reactions


Coenzyme A

3'-phosphoadenosine diphosphate


Figure 16-6 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

- Synthesized from the vitamin pantothenic acid
- Has a free thiol (-SH) group

- Coenzyme A has a free thiol group (CoASH) that can form **thioesters** which are **energyrich compounds** (high free energies of hydrolysis - ΔG° ' = -31 kJ/mol
 - Energizes molecules
 - \circ Makes more unstable and more prone to react and release energy

Thioester linkage (joins thiol with carboxylic acid)

SUMMARY:

- Net reaction is **SIMPLE** Process in **COMPLEX**!
- Pyruvate is now activated ready to enter the TCA cycle as Acetyl-CoA!