Problems on Numerical Sequences

Problems on monotone sequences

- 1. Show that the sequence $\{u_n\}$ defined by $u_1 = 0, u_2 = \frac{1}{2}$ $\frac{1}{2}$, $u_{n+1} = \frac{1}{3}$ $\frac{1}{3}(1+u_n+u_{n-1}^3), n \in \mathbb{N}$ converges and determine its limit.
- 2. For a fixed positive number α and fixed natural number p, if $u_1 > \sqrt{\alpha}$, and $u_{n+1} = \frac{p-1}{n}$ $\frac{-1}{p}u_n+\frac{\alpha}{p}$ $\frac{\alpha}{p}u_n^{-p+1},\,n\in\mathbb{N},$ then describe the behaviour of $\{u_n\}$.
- 3. For a fixed positive number α , if $u_1 > \sqrt{\alpha}$, and $u_{n+1} = \frac{\alpha + u_n}{1 + u_n}$ $\frac{\alpha+u_n}{1+u_n}$, $n \in \mathbb{N}$, then check the monotonicity of $\{u_{2m}\}$ and $\{u_{2m-1}\}$. Also check the convergence of $\{u_n\}$.
- 4. Let $a_1, a_2, ..., a_p$ be fixed positive numbers. Consider the sequence $\{u_n\}$ by $u_n = \sqrt[n]{\frac{a_1^n + a_1^n + a_2^n + ... + a_p^n}{p}}$, $n \in \mathbb{N}$. Show that $\{u_n\}$ is monotone increasing.
- 5. Let f, g be continuous and positive functions defined on [0, 1]. Suppose that $\int_0^1 f(x)dx = \int_0^1 g(x)dx$ and for every integer $n \geq 0$, define $y_n = \int_0^1$ $\frac{(f(x))^{n+1}}{(g(x))^n}dx$. Check the monotonicity of y_n .
- 6. if $\{u_n\}$ be a bounded sequence such that $u_{n+1} > u_n \frac{1}{2^n}$, $n \in \mathbb{N}$. Show that $\{u_n\}$ is convergent.

).

7. Check the convergence of the sequence $\{u_n\}$, where

(i)
$$
u_n = -2\sqrt{n} + (1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}})
$$

(ii) $u_n = -2\sqrt{n+1} + (1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}})$

- 8. For $c > 2$, define $\{u_n\}$ by $u_1 = c^2$ and $u_{n+1} = (u_n c)^2$, $n \in \mathbb{N}$. Show that $\{u_n\}$ is strictly increasing.
- 9. Let a be arbitrarily fixed and let c be defined as follows: $u_1 \in \mathbb{R}$ and $u_{n+1} = u_n^2 + (1 2a)u_n + a^2$, $n \in \mathbb{N}$. Determine all u_1 such that the sequence $\{u_n\}$ converges and in such a case find limit of $\{u_n\}$.
- 10. Show the convergence and find the limit of the sequence $\{u_n\}$, where $u_n = \frac{n+1}{2^{n+1}}(2 + \frac{2^2}{2} + ... + \frac{2^n}{n})$ $\frac{2^n}{n}$, $n \in \mathbb{N}$.

11. Let $\{u_n\}$ be a sequence of real numbers such that $\lim_{n\to\infty}$ $u_n+3\left(\frac{n-2}{n}\right)$ n $\biggr) ^{n}\biggr\vert% {\displaystyle\int} ^{n}\biggr\vert^{n}\biggr\vert^{n}\biggr) ^{n}\biggr\vert^{n}\biggr\vert^{n}\biggr\vert^{n}\biggr) ^{n}\biggr\vert^{n}\big$ $\frac{1}{n}$ = $\frac{3}{5}$ $\frac{3}{5}$. Find $\lim_{n\to\infty}u_n$.

12. Find the limit of the sequence
$$
\{u_n\}
$$
, where
\n(i) $u_n = (\sqrt{2} - \sqrt[3]{2})(\sqrt{2} - \sqrt[5]{2})...(\sqrt{2} - \sqrt[2n+1]{2})$
\n(ii) $u_n = (\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + ... + \frac{1}{n \cdot (n+1) \cdot (n+2)})$
\n(iii) $u_n = \frac{1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + ... + n \cdot n!}{(n+1)!}$
\n(iv) $u_n = \frac{n!}{(2n+1)!!}$
\n(v) $u_n = \frac{a + aa + aa + a \cdot a + ... + a \cdot a \cdot (n \times m)}{10^n}$, where $a \in \{1, 2, ..., 9\}$
\n(vi) $u_n = \frac{1}{n} [(n+1)(n+2)...(n+n)]^{\frac{1}{n}}$

Problems on limit point, limit superior, limit infirior

- 1. Determine the set of all limit points, limit superior, limit inferior of $\{u_n\}$, where (*i*) $u_n = \frac{2n^2}{7} - \left[\frac{2n^2}{7}\right]$ $\frac{n^2}{7}]$
	- (*ii*) $u_n = n^{(-1)^n n}$
	- (*iii*) $u_n = n\alpha [n\alpha]$, where α is real
	- (iv) $u_n = \sin(n\pi\alpha)$, where α is real

(v)
$$
u_n = (1 + \frac{(-1)^n}{n})^n + \sin(\frac{n\pi}{4})
$$

- 2. Find the upper and lower limit of the sequence $\{u_n\}$, defined by $u_1 = 0$, $u_{2m} = \frac{u_{2m-1}}{2}$ $\frac{m-1}{2}$, $u_{2m+1} = \frac{1}{2} + u_{2m}$.
- 3. For any two sequences $\{u_n\}$ and $\{v_n\}$, prove that

$$
\lim_{n \to \infty} \inf(u_n) + \lim_{n \to \infty} \inf(v_n) \le \lim_{n \to \infty} \inf(u_n + (v_n) \le \lim_{n \to \infty} \inf(u_n) + \lim_{n \to \infty} \sup(v_n)
$$

$$
\le \lim_{n \to \infty} \sup(u_n + v_n) \le \lim_{n \to \infty} \sup(u_n) + \lim_{n \to \infty} \sup(v_n)
$$

excluding the indeterminate forms of type $\infty - \infty$. What happen if the additions in above inequalities are replaced by multiplication?

4. Prove that for any positive sequence $\{u_n\},\$

$$
\lim_{n \to \infty} \inf (\frac{u_{n+1}}{u_n}) \le \lim_{n \to \infty} \inf (\sqrt[n]{u_n}) \le \lim_{n \to \infty} \sup (\sqrt[n]{u_n}) \le \lim_{n \to \infty} \sup (\frac{u_{n+1}}{u_n})
$$

5. For any two sequences $\{u_n\}$ and $\{v_n\}$, prove that

$$
\lim_{n \to \infty} sup(max\{u_n, v_n\}) = max\{\lim_{n \to \infty} sup(u_n), \lim_{n \to \infty} sup(v_n)\}\
$$

and

$$
\lim_{n \to \infty} \inf(\max\{u_n, v_n\}) = \max\{\lim_{n \to \infty} \inf(u_n), \lim_{n \to \infty} \inf(v_n)\}\
$$

Are the above results also holds for minimum? Justify.

- 6. Prove that every bounded sequence of real numbers contains a convergent sub-sequence.
- 7. Let $\{u_n\}$ be a sequence of real numbers. Then $\{u_n\}$ is convergent if and only if $\lim_{n\to\infty} inf(u_n) = \lim_{n\to\infty} sup(u_n)$ $\lim_{n\to\infty}(u_n)$ and these are finite.
- 8. What relation, if any, can you state for the limit superior and limit inferior of a sequence $\{u_n\}$ and one of its sub-sequences $\{u_{n_k}\}$?
- 9. If a sequence $\{u_n\}$ has no convergent sub-sequences, what can you state about the limit superior and limit inferior of the sequence?
- 10. Let S denote the set of all real numbers t with the property that some subsequence of a given sequence ${u_n}$ converges to t. What is the relation between the set S and the limit superior and limit inferior of the sequence $\{u_n\}$?
- 11. For any sequence $\{u_n\}$, write $s_n = \frac{u_1 + u_2 + \dots + u_n}{n}$. Show that

$$
\lim_{n \to \infty} \inf(u_n) \le \lim_{n \to \infty} \inf(s_n) \le \lim_{n \to \infty} \sup(s_n) \le \lim_{n \to \infty} \sup(u_n)
$$

Give an example to show that each of these inequalities may be strict.

Problems on Cauchy sequences

- 1. Define Cauchy sequences. Prove that a real sequence is convergent if and only if it is a Cauchy sequence. Show also that every subsequence of a Cauchy sequence is Cauchy.
- 2. State and prove the necessary and sufficient condition for the convergence of a real sequence.
- 3. Show that any multiple of a Cauchy sequence is again a Cauchy sequence.
- 4. Prove or disprove that if for a sequence $\{u_n\}$, for all $\epsilon > 0$ there exists an integer N with the property that $| u_{n+1} - u_n | < \epsilon$, whenever $n \geq N$, then the sequence is Cauchy sequence.
- 5. What can you conclude about the sequence $\{u_n\}$, if there exists $\epsilon > 0$ be such that for all positive integer N with the property that $|u_m - u_n| < \epsilon$, whenever $m, n \ge N$.

6. Show that if
$$
\lim_{n \to \infty} u_n = l
$$
, then $\lim_{n \to \infty} \frac{u_1 + u_2 + \dots + u_n}{n} = l$. Is the converse true?
7. Show that if $\lim_{n \to \infty} u_n = l$, then $\lim_{n \to \infty} \frac{n.u_1 + (n-1.u_2 + \dots + 1.u_n - l_{n-1} \cdot l_{n-1$

7. Show that if
$$
\lim_{n \to \infty} u_n = l
$$
, then $\lim_{n \to \infty} \frac{n \cdot u_1 + (n-1) \cdot u_2 + \dots + 1 \cdot u_n}{n^2} = \frac{l}{2}$. Is the converse true?
8. Show that if $\lim_{n \to \infty} u_n = l$ then $\lim_{n \to \infty} \frac{n \cdot u_1 + (n-1) \cdot u_2 + \dots + 1 \cdot u_n}{n^2} = \frac{l}{l}$ is the converse true?

- 8. Show that if $\lim_{n\to\infty} u_n = l$, then $\lim_{n\to\infty} \sqrt[n]{u_1 u_2 ... u_n} = l$. Is the converse true?
- 9. For a positive sequence $\{u_n\}$, show that if $\lim_{n\to\infty} \frac{u_{n+1}}{u_n}$ $\frac{u_{n+1}}{u_n} = l$, then $\lim_{n \to \infty} \sqrt[n]{u_n} = l$. Is the converse true?

10. Let
$$
\lim_{n \to \infty} u_n = u
$$
 and $\lim_{n \to \infty} v_n = v$. Show that $\lim_{n \to \infty} \frac{u_1 v_n + u_2 v_{n-1} + \dots + u_n v_1}{n} = uv$.
11. Find the limit of the sequence $\{u_n\}$ where

(i)
$$
u_n = \frac{n}{a^{n+1}} \sum_{r=1}^n \frac{a^r}{r}
$$
, where $a > 1$ (ii) $u_n = \frac{1}{n^{k+1}} \sum_{r=0}^n \frac{(k+r)!}{r!}$, where $k \in \mathbb{N}$. (iii) $u_n = \frac{1}{\sqrt{n}} \sum_{r=0}^n \frac{1}{\sqrt{n+r}}$, where $u_n = \frac{1}{1 + \sum_{r=0}^n r \cdot a^r}$

$$
a > 1 (iv) u_n = \frac{1 + \sum_{r=1}^{n} r \cdot a^r}{n \cdot a^{n+1}}, \text{ where } a > 1 (v) u_n = \frac{1}{\sqrt{n}} \sum_{r=1}^n \frac{a_r}{\sqrt{r}}, \text{ when } \{a_n\} \text{ converges to } a. (vi) u_n = \sum_{r=0}^{n-1} \frac{a_{n-r}}{2^r},
$$

when
$$
\{a_n\}
$$
 converges to a. *(vii)* $u_n = \sum_{r=1}^n \frac{a_{n+1-r}}{r(r+1)}$, when $\{a_n\}$ converges to a. *(viii)* $u_n = \frac{k}{\sqrt[n]{n!}}$, $k \in \mathbb{N}$. *(ix)*

- $u_n = \sqrt[n]{\binom{nk}{n}}$ $\binom{n}{n}$, when k be a fixed integer greater than 1. (x) $u_n = n^x (a_1 a_2 ... a_n)^{\frac{1}{n}}$, when $\{n^x a_n\}$ converges to a for some real x.
- 12. Prove that if $\{u_n\}$ is a sequence for which $\lim_{n\to\infty}(u_{n+1}-u_n)=u$, then prove that $\lim_{n\to\infty}\frac{u_n}{n}$ $\frac{u_n}{n} = u.$
- 13. Suppose $\{u_n\}$ be such that the sequence $\{v_n\}$ with $v_n = 2u_n + u_{n-1}$, $n \geq 2$, converges to v. Study the convergence of $\{u_n\}$.

14. Calculate (i)
$$
\lim_{n \to \infty} (n!e - [n!e])
$$
 (ii) $\lim_{n \to \infty} n \sin(2\pi n!e)$. (iii) $\lim_{n \to \infty} \sin\left(\left(2n\pi + \frac{1}{2n\pi}\right)\sin\left(2n\pi + \frac{1}{2n\pi}\right)\right)$
(iv) $\lim_{n \to \infty} \sum_{k=0}^{n} {n \choose k} \sin\left(x + \frac{k\pi}{2}\right)$ (v) $\lim_{n \to \infty} \sum_{k=2}^{n} \frac{(n-1)!}{(n-k)!(k-2)!}$